

Science of the CLEXER Model

 $\bigcirc$ 

CHARLES LUO RIVER FORECAST CENTRE MARCH 10, 2020

### What CLEVER stands for?

In this study, a different hybrid watershed model, the <u>Channel Links Evolution Efficient Routing (CLEVER)</u> Model, is developed for the purpose of real-time flood forecasting for the large-scale watersheds in BC. --Technical Reference for The CLEVER Model – A Realtime Flood Forecasting Model for British Columbia, Charles Luo, 2015

COFFEE Model – Coastal Fall flood Ensemble Estimation model ELF Model – Extrapolating Logarithmic Flow (ELF) Model for 30-Day Low Streamflow Forecast



Watershed Skeletonization Procedure

## What's the CLEVER Model?

Watershed routing sub-model: Hourly Temperature Index + instantaneous. UH



$$W = R + M + G - E - I$$

MBLA

**River Forecast Centre** 

$$M = c_a c_d M_f (T_i - T_b)^{\beta}$$

$$u(\tau) = \frac{t^{N-1}e^{-\tau/k}}{k^N(N-1)!}$$

$$Q_l(t) = c_q W_l A u(t - t_{l0})$$

$$Q(t) = \sum_{l=1}^{L} Q_l(t)$$

# What's the CLEYER Model?

Channel link routing sub-model: kinematic wave routing





British Columbia

**River Forecast Centre** 



## What's the CLEVER Model?

 $E_{ra} = 100 \times \left(\frac{1}{m} \sum_{j=1}^{m} \left| Q_{sim}^{j} - Q_{obs}^{j} \right| \right) / \overline{Q_{obs}}$ 

Model calibration and verification: Statistically and visually

 $C_{e} = 1 - \frac{\sum_{j=1}^{m} (Q_{obs}^{j} - Q_{sim}^{j})^{2}}{\sum_{j=1}^{m} (Q_{obs}^{j} - \overline{Q_{obs}})^{2}}$ where  $\overline{Q_{obs}}$  is the mean of the observed flow and is given by:  $\overline{Q_{obs}} = \frac{1}{m} \sum_{j=1}^{m} Q_{obs}^{j}$ 

 $C_{d} \text{ can be written as:} \qquad r^{2} = \frac{\left[\sum_{j=1}^{m} \left(Q_{obs}^{j} - \overline{Q_{obs}}\right) \left(Q_{sim}^{j} - \overline{Q_{sim}}\right)\right]^{2}}{\sum_{j=1}^{m} \left(Q_{obs}^{j} - \overline{Q_{obs}}\right)^{2} \sum_{j=1}^{m} \left(Q_{sim}^{j} - \overline{Q_{sim}}\right)^{2}}$   $\begin{cases} C_{d} = 1 - \frac{\sum_{j=1}^{m} \left[Q_{obs}^{j} - \left(\overline{a} \cdot Q_{sim}^{j} + b\right)\right]^{2}}{\sum_{j=1}^{m} \left(Q_{obs}^{j} - \overline{Q_{obs}}\right)^{2}} \\ a = (\overline{P} - \overline{Q_{obs}} \cdot \overline{Q_{sim}}) / \left(\overline{Q_{sim}^{2}} - \overline{Q_{sim}^{2}}\right) \\ b = \overline{Q_{obs}} - a \cdot \overline{Q_{sim}} \end{cases}$ And the percentage volume difference (dV) is calculated by:  $dV = 100 \times \left(\overline{Q_{sim}} - \overline{Q_{obs}}\right) / \overline{Q_{obs}}$ 

### Forecast operation



#### Model Period: 30 day

• 20-day calibration

**JUMBIA** 

**River Forecast Centre** 

• 10-day forecast



#### Model calibration: Statistics (2018)

| Basin    | Station                                      | CE_HR | CD_HR | DV_HR (%) |
|----------|----------------------------------------------|-------|-------|-----------|
| Fraser   | MCGREGOR RIVER AT LOWER CANYON (08KB003)     | 0.926 | 0.948 | -2.907    |
|          | FRASER RIVER AT HANSARD (08KA004)            | 0.954 | 0.958 | -2.648    |
|          | FRASER RIVER AT SHELLEY (08KB001)            | 0.910 | 0.936 | -6.258    |
|          | FRASER RIVER NEAR MARGUERITE (08MC018)       | 0.926 | 0.949 | 6.491     |
|          | FRASER RIVER AT HOPE (08MF005)               | 0.978 | 0.988 | 3.289     |
|          | NECHAKO RIVER AT ISLE PIERRE (08JC002)       | 0.962 | 0.963 | 0.652     |
|          | WEST ROAD RIVER NEAR CINEMA (08KG001)        | 0.894 | 0.902 | 9.246     |
|          | QUESNEL RIVER NEAR QUESNEL (08KH006)         | 0.991 | 0.992 | 1.386     |
|          | LILLOOET RIVER NEAR PEMBERTON (08MG005)      | 0.905 | 0.907 | 1.260     |
| Thompson | NORTH THOMPSON RIVER AT MCLURE (08LB064)     | 0.982 | 0.989 | 5.045     |
|          | SOUTH THOMPSON RIVER AT CHASE (08LE031)      | 0.982 | 0.986 | 2.755     |
|          | NICOLA RIVER NEAR SPENCES BRIDGE (08LG006)   | 0.946 | 0.947 | -0.567    |
|          | THOMPSON RIVER NEAR SPENCES BRIDGE (08LF051) | 0.982 | 0.991 | 5.361     |

### Model Accuracy?

#### Model verification (forecast): Statistics (2018)

| Basin    | Station                                      | ERA(%) | RSQU  |
|----------|----------------------------------------------|--------|-------|
| Fraser   | MCGREGOR RIVER AT LOWER CANYON (08KB003)     | 22.534 | 0.375 |
|          | FRASER RIVER AT HANSARD (08KA004)            | 16.927 | 0.465 |
|          | FRASER RIVER AT SHELLEY (08KB001)            | 14.599 | 0.522 |
|          | FRASER RIVER NEAR MARGUERITE (08MC018)       | 12.651 | 0.560 |
|          | FRASER RIVER AT HOPE (08MF005)               | 10.030 | 0.606 |
|          | NECHAKO RIVER AT ISLE PIERRE (08JC002)       | 9.383  | 0.644 |
|          | WEST ROAD RIVER NEAR CINEMA (08KG001)        | 31.511 | 0.462 |
|          | QUESNEL RIVER NEAR QUESNEL (08KH006)         | 9.655  | 0.622 |
|          | LILLOOET RIVER NEAR PEMBERTON (08MG005)      | 26.486 | 0.343 |
| Thompson | NORTH THOMPSON RIVER AT MCLURE (08LB064)     | 18.448 | 0.504 |
|          | SOUTH THOMPSON RIVER AT CHASE (08LE031)      | 9.065  | 0.879 |
|          | NICOLA RIVER NEAR SPENCES BRIDGE (08LG006)   | 32.966 | 0.318 |
|          | THOMPSON RIVER NEAR SPENCES BRIDGE (08LF051) | 9.963  | 0.734 |



On May 09, 2018, the **CLEVER Model** forecasts about 200 year return period floods for the south interior for the next day, May 10, 2018

ABLA **River Forecast Centre** 









#### An example: May 2018 event in south interior





#### An example: May 2018 event in south interior

