# Technical reference for The Extrapolating Logarithmic Flow (ELF) Model

 An operational low flow forecasting system for British Columbia Charles Luo, Ph.D., P.Eng.



(Koksilah River, June 18, 2019)

A technical report of the BC River Forecast Centre Victoria, British Columbia, Canada August 2023

#### Abstract

British Columbia (BC) experienced and is experiencing drought hazards, and the River Forecast Centre (RFC) is part of BC provincial drought responding resources. Extreme low flows may pose hydrological and/or ecological drought hazards. On this background, the Extrapolating Logarithmic Flow (ELF) Model was developed in the RFC for medium-term low flow forecasting for BC watersheds. The ELF Model is a mathematical/empirical model, which uses 30-day flow data of discharges and water levels as input to produce 30-day low flow forecasts of discharges and water levels, which are analogues to ensemble forecasts.

In this study, the low flow is redefined from the hydrological perspective, which makes the low flow more predictable under climate change scenarios. Based on this definition, the major characteristic of low flow is summarized as that the streamflow is decreasing, and the rate of decreasing becomes smaller and smaller with time. To avoid the obstacles faced by hydrological methods in low flow simulation, this study employs a mathematical or empirical method to forecast low flows. The fundamental assumption for mathematical methods for low flow forecasting is that the sum of the water release rate from the watershed liquid water storage plus the net meteorological liquid water input rate to the streamflow is a function of time and parameters, and the parameters remain constant for a certain period.

The basic equation for the mathematical method for low flow forecasting in this study is the exponential recession equation. However, the actual low flow data may include significant noises, and the logarithmic flow may not always be linear. In this study, the so-called "twelve-step and twelve-scenario scheme" is developed to meet the challenges posed by the data noise and non-linear logarithmic flow issues. This scheme also produces analogues to ensemble forecasts for low flows, which include forecast maximums, minimums, and averages for the next 30 days.

In this study, a different approach is employed to evaluate the model forecast accuracy – how the forecast maximums and minimums accommodate the observed flows. The ELF Model was put into operation as of July 2018 and together with the reconstructed "forecasts" from January 2015 to June 2018, there is a total of 8 years of forecasts to the end of 2022 (about 800) for each of the 439 stations. A statistical analysis for the ELF Model historical forecasts for all the flow stations was carried out, and the results show that, in general, the ELF Model has better forecasts for most stations in July and August than in the other months, the model forecast accuracy is the lowest in April and May, and the model forecast accuracy for water levels is higher than that for discharges.

### Table of Contents

| 1.  | Introduction                                                                                  | . 5 |
|-----|-----------------------------------------------------------------------------------------------|-----|
| 2.  | Definition and characteristics of low flow from hydrological perspective                      | . 8 |
| 3.  | Obstacles faced by low flow simulation with hydrological methods                              | 14  |
| 4.  | Fundamental assumption for mathematical methods for low flow forecasting                      | 15  |
| 5.  | Basic equations of mathematical method for low flow simulation and extended characteristic of |     |
|     | low flow                                                                                      | 16  |
| 6.  | Solving exponential recession equation for overdetermined system                              | 18  |
| 7.  | Twelve-step and twelve-scenario scheme for meeting challenges posed by data issues of noises  |     |
|     | and non-logarithmic flow and for analogues to ensemble forecasts                              | 19  |
| 8.  | Products of ELF Model                                                                         | 28  |
| 9.  | Evaluation of ELF Model forecast accuracy                                                     | 36  |
| 10. | Forecasts of rise                                                                             | 48  |
| 11. | Forecasts for regulated stations                                                              | 49  |
| 12. | Summary and conclusions                                                                       | 51  |
| 13. | References                                                                                    | 53  |

### List of Tables

| Table 1. Average receding periods ( $T0$ ) for 10 coastal watersheds and 10 interior watersheds11          |
|------------------------------------------------------------------------------------------------------------|
| Table 2. Statistics of ELF Model historical forecast accuracy for discharge for 10 coastal watersheds and  |
| 10 interior watersheds                                                                                     |
| Table 3. Top ranked 50 stations ELF Model has largest annual percent of accurate forecasts for             |
| discharges                                                                                                 |
| Table 4. Top ranked 50 stations ELF Model having largest annual percent of accurate forecasts for water    |
| levels                                                                                                     |
| Table 5. Top ranked 50 stations ELF Model has largest Jul + Aug percent of accurate forecasts for          |
| discharges                                                                                                 |
| Table 6. Top 50 stations ELF Model has largest Jul + Aug percent of accurate forecasts for water levels.45 |
| Table 7. Statistics of numbers of stations with accurate forecasts equal to and greater than 50 to 90%.46  |

### List of Figures

| Figure 1. Two extreme examples of $T0$ for BC watersheds                                                   |
|------------------------------------------------------------------------------------------------------------|
| Figure 2. Correlations between average receding period $T0$ and square root of watershed area13            |
| Figure 3. Snapshot of BC Groundwater Wells and Aquifers website showing sparsity of observation wells      |
| (dark brown dots) and mapped aquifers (brown lines and filled patches)                                     |
| Figure 4. Examples of low flow data issues20                                                               |
| Figure 5. Examples of ELF Model accurate forecasts for observed flows with data issues                     |
| Figure 6. A Maphub GIS map of ELF Model forecast updated on Augst 8, 2023                                  |
| Figure 7. Interactive charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) 30            |
| Figure 8. Static charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038)32                  |
| Figure 9. Static charts of verification of ELF Model forecast for previous month – SIMILKAMEEN RIVER       |
| NEAR HEDLEY (08NL038)                                                                                      |
| Figure 10. Static charts of verification of ELF Model forecast for a similar period in previous year –     |
| SIMILKAMEEN RIVER NEAR HEDLEY (08NL038)                                                                    |
| Figure 11. Four categories of ELF Model accurate forecasts                                                 |
| Figure 12. Statistical bar charts of ELF Model historical forecast accuracy for discharge for two BC       |
| watersheds                                                                                                 |
| Figure 13. Statistical bar charts of numbers of stations with accurate forecasts equal to and greater than |
| 50 to 90%                                                                                                  |
| Figure 14. Examples of ELF Model accurate forecasts of rise                                                |
| Figure 15. Examples of ELF Model accurate forecasts for regulated stations                                 |

### 1. Introduction

Most regions of Canada have periods of drought in the hydrological year, but drought hazards are more frequent in the Prairies and interior of British Columbia (BC) due to their geographic locations, which are separated from the Pacific Ocean by the coastal mountains that serve as natural barriers to the transportation of air moisture or precipitation from the coasts. In the past two centuries, several long-duration droughts have occurred in BC and other parts of western Canada (Bonsal et al., 2011).

Although the number of consecutive days without measurable precipitation was decreasing in BC (Vincent and Mekis, 2006) from 1950 to 2007, it was found that the summer mean maximum temperatures have significantly increased over most parts of Canada, especially in the west including BC and the Prairies (Mekis and Vincent, 2008). Extreme summer temperatures are connected to historical droughts, e.g., 1936, 1937, 1961, 1984, 1985, 1988, 2001 and 2002 (Mekis and Vincent, 2008).

The 2015 drought may be the worst one in the recent memory, starting with lower-than-normal snowpacks. Drought levels ramped up quickly for much of southern BC to Level 4, which was the highest drought response level on the provincial rating scale in the years before 2021, due to hot and dry conditions in late August (BC Gov., 2023 a). Several extreme-low streamflow advisories and extreme wildfire risk ratings were issued. Stringent water restrictions were in place by the end of June as some of the rivers reached their lowest records since measurements began 80 to 100 years ago (Szeto et al., 2016). In 2018, it was unusual that the entire coast including the Northwest, which did not normally experience drought in the history, was impacted by severe drought of the highest Level (Level 4) that prevailed late into November (BC Gov., 2023 a).

The spring of 2021 started with dry and seasonal temperatures in most regions of BC, which continued throughout May and June. At the end of June a "heat dome" event," which was an unprecedentedly extreme high temperature over 40 °C for most parts of the province, triggering significant snowmelt and glacier melt. Drought conditions were significantly worsened for Vancouver Island, the South Coast, and the Southern Interior by mid-July and intensified into August and September with several streams falling below the "critical environmental flow thresholds" for several weeks for these regions (BC Gov., 2023 a).

In 2022, drought extended into December due to prolonged precipitation deficits starting in the summer, with Levels 4 and 5 for the northeast. In a communication in early August 2023, provincial officials stated that the 2023 drought and wildfire situations in BC are also unprecedented, which were caused by early and rapid snowmelt in May 2023 and continuous lack of precipitation across much of the province in the summer.

To facilitate drought management across BC, the "British Columbia Drought Response Plan" (Econnics and MOE, 2015) and the new version titled "British Columbia Drought and Water Scarcity Response Plan" (WLRS and IADWG, 2023) (hereinafter referred to as "the Plan") were developed. In the Plan, drought is defined as "a recurrent feature of climate involving a deficiency of precipitation over an

extended period, resulting in a water shortage for activities, communities or aquatic ecosystems." In BC, drought may be caused by combinations of insufficient snow accumulation, hot and dry weather and/or delay in rainfall. From the perspective of its impacts, drought can be meteorological, hydrological, agricultural, socio-economical or ecological. Hydrological drought is formed when the water levels in rivers, reservoirs, lakes and aquifers fall below certain thresholds, resulting in water scarcity and affecting the ecosystems, hydroelectric power generation, and recreational, industrial and urban water use, and BC's First Nations water values (Econnics and MOE, 2015; WLRS and IADWG, 2023).

In Appendix 4 of the Plan, "Provincial Agencies/ Ministry of Forests (FOR)" under "Provincial and Federal Agency Drought Responsibilities" reads, "Operates the River Forecast Centre; collects and interprets snow, meteorological and stream flow data to provide warnings and forecasts of stream and lake runoff conditions." (WLRS and IADWG, 2023). In Appendix 7 of the Plan, "Provincial Government Resources/ River Forecast Centre (RFC)" under "Additional Resources" reads, "The RFC collects and interprets snow, meteorological and stream flow data to provide warnings and forecasts of stream and lake runoff conditions around the province." (WLRS and IADWG, 2023). In simple words, the RFC is part of the drought management resources of BC, and low flow forecasting for drought managements is within its responsibilities. In a communication between the branch management and the RFC modelers in early 2018, developing a low flow forecast model in the RFC was first discussed. On this background, a medium lead time (30 days) low flow forecasting model – the Extrapolating Logarithmic Flow (ELF) Model was developed in the RFC.

Drought is a natural event resulting from less than normal precipitation and above normal temperatures for an extended period, while the low flow is a seasonal phenomenon of any river which may occur in any year. This means that droughts include low flow periods even though a continuous seasonal low flow event does not necessarily constitute a drought. Yet, many researchers referred to a continuous low flow period in year as an annual drought (Smakhtin, 2001). Therefore, low flow flow forecasting is important for drought managements and responses.

However, low flow simulation and forecasting remains a difficult task for hydrological modellers because the low flow is a long-lasting phenomenon with slow dynamics comparing to floods (Nicolle, et al., 2014). Nicolle, et al. (2014) tested five traditional hydrological models, four conceptual lumped-sum models and one physically based distributed model, in 21 French watersheds, and they found that the forecasts are good only for a short lead time (7 days). Demirel et al. (2015) investigated the ability of two conceptual hydrological models and one data-driven model based on Artificial Neural Networks (ANNs) for low flow forecasts in the Moselle River for a lead time of 90 days, using ensemble seasonal meteorological forecasts as input. It was found that all the models systematically overestimated the runoff during low flow periods, and all the models underestimated the low flows beyond 90 days in the very dry year of 2003 without precipitation data input.

On the other hand, empirical methods for low flow forecasting have been developed long before

the conceptual lumped modeling and physically based modeling. Barnes (1939) noticed the recession characteristics of the streamflow when he plotted the low flow on semi-logarithmic papers, which showed a roughly straight line. Based on this finding, researchers have summarized a few forms of the recession equation for the low flow (e.g. Toebes and Strang, 1964; Hall, 1968; Reed and Warne, 1985). However, due to low computing capability and lack of automatic data entry, the early empirical models for low flow forecasting were only able to forecast a very short lead time, such as 2 days (Reed and Warne, 1985). Risva et al. (2018) provided a simple model for low flow forecasting in the Mediterranean region for a lead time up to six months, and the core of their methodology is the exponential recession function. In their model, Risva et al. (2018) used the low flow data from the previous years to calibrate the model to determine the recession parameter, and the low flow period was preset to a six-month period from April 15 to October 15. The preset low flow period limits their model's applicability in a fastchanging climate.

Moreover, when the actual low flow data from a large number of flow stations (more than 400) in BC were studied by the author of this study, it was found the actual low flow data may include significant data noises stemmed from rainfall and/or snow melts and/or measurement errors. Meanwhile, the actual low flow may not strictly follow the trend of the exponential recession equation. These data issues posed significant challenges to low flow forecasting. In the ELF Model, which is a mathematical (empirical) model employing the exponential recession equation in the form presented by Reed and Warne (1985) as the basic governing equation, a special numerical scheme, the so-called "twelve-step and twelve-scenario scheme" was developed. This scheme not only is able to meet the challenges posed by the above data issues, but also produces analogues to ensemble forecasts. In this study, the ELF Model uses 30-day observed daily flow data of discharges and/or water levels to produce 30-day forecasts of discharges and/or water levels at a daily time interval. The model can be run all year round which does not require a preset period of low flow or dry season.

In the coming sections, starting from the definition of low flow from the hydrological perspective, the characteristics of low flow are reviewed, and the obstacles of low flow simulation with hydrological methods are discussed. After the fundamental assumption for mathematical methods for low flow simulation is laid out, the basic equation of the mathematical method is given, and solution of the exponential recession equation for an overdetermined system is derived. Flow data issues for low flow simulation are discussed briefly, and then the "twelve-step and twelve-scenario scheme" is depicted in detail. The method for the EFL Model historical forecast accuracy evaluation is related, and the results of the statistical analysis are presented. At the end of this technical report, this study is summarized and concluded.

# 2. Definition and characteristics of low flow from hydrological perspective

In the document titled "Definition and Characteristics of Low Flows" (USEPA, 2022), Section "What is low flow?" reads, "Low flow is the 'flow of water in a stream during prolonged dry weather' according to the World Meteorological Organization. Many states use design flow statistics such as the 7Q10 (the lowest 7-day average flow that occurs on average once every 10 years) to define low flow for setting permit discharge limits." This definition of low flow is more or less from the perspective of water supply and environmental management. Moreover, according to USEPA (2022), any year can be an anomaly with respect to occurrence and time of occurrence of low flows, and the magnitude and duration of low flows can vary significantly from year to year. This statement points out the highly unpredictable nature of low flows.

World Meteorological Organization (WMO)'s Manual on Low flow Estimation and Prediction (WMO, 2008) gives the causes of low flow as, (a) an extended dry period leading to a climatic water deficit when potential evaporation exceeds precipitation, or (b) extended periods of low temperatures during which precipitation is stored as snow. WMO (2008) also describes the geological and geomorphological factors of a watershed that affect the process of low flow.

Starting from the concepts given above, the low flow is re-defined from the hydrological perspective in this study so that the low flow is more predictable. If a single watershed is examined as an isolated geomorphological body, the liquid water storage *S* in the watershed can be written as

$$S = S_f + S_s + S_g$$

in which  $S_f$  is the surface water,  $S_s$  is the soil moisture, and  $S_g$  is the groundwater. The change of water storage dS can be written as

$$dS = d(S_f + S_s + S_g) = [(R + M - E)A - Q]dt$$
(2)

where, R is the watershed averaged rainfall rate, M is the watershed averaged rate of snowmelt and/or glacier melt, E is the watershed averaged actual rate of evapotranspiration, A is the watershed area, and Q is the outflow from the watershed (discharge at the outlet). Rearranging Equation (2), it becomes

$$Q = \left(-\frac{dS}{dt}\right) + \left(R + M - E\right)A\tag{3}$$

Or

$$Q = \Phi + \Psi$$

(4)

(1)

where  $\Phi = -ds/dt$ , which is the water release rate from the watershed liquid water storage, and  $\Psi =$ 

(R + M - E)A, which is the net meteorological liquid water input rate to the watershed.

From Equations (3) and (4), it can be seen that there are two sources of the outflow Q of the watershed, (i) the direct release from the liquid water storage of the watershed, which is the first term of Equations (3) and (4), including the releases from the surface water and groundwater (the soil moisture can not directly release to the streamflow); (ii) the net meteorological liquid water input, which is the second term of Equations (3) and (4), including rainfall and snowmelt/glacier melt subtracting evapotranspiration.

In order to investigate the change of Q with time, time derivative calculation is carried out on both sides of Equation (4)

$$\frac{dQ}{dt} = \frac{d}{dt}(\Phi + \Psi)$$

(5)

Multiplying dt to both sides of Equation (5), it becomes

$$dQ = d(\Phi + \Psi)$$

(6)

Discretizing Equation (6) into the differential form, it can be written as

$$\Delta Q = \Delta (\Phi + \Psi) \tag{7}$$

For time step t and t+1

$$Q_{t+1} - Q_t = (\Phi_{t+1} + \Psi_{t+1}) - (\Phi_t + \Psi_t)$$
(8)

When the outflow Q from the watershed is observed decreasing  $(Q_{t+1} - Q_t < 0)$ , and from Equation (4) it is noticed that  $\Phi_t + \Psi_t = Q_t$ , the following equation can be derived from Equation (8)

$$\begin{cases} \Phi_{t+1} + \Psi_{t+1} < Q_t \\ Q_{t+1} - Q_t < 0 \end{cases}$$

(9)

The physical meaning of Equation (9) is that the outflow Q from the watershed starts decreasing when the sum of the rate of release from the watershed liquid water storage ( $\Phi$ ) plus the rate of net meteorological liquid water input ( $\Psi$ ) is smaller than the outflow. The low flow in this study will be defined based on Equation (9).

**Definition:** The low flow is the outflow from a watershed that has been continuously decreasing from the most recent high peak for a period  $(T_0)$ :

$$\begin{cases} \Delta Q = \Delta (\Phi + \Psi) < 0 \\ Q_L = Q_t, \quad \text{when } t \ge T_0 \end{cases}$$
(10)

in which  $Q_L$  is the low flow, and  $T_0$  is the so-called receding period in this study.

From the above definition and Equations (3) to (10), the characteristics of low flow can be summarized as follows,

- a. The streamflow is decreasing.
- b. <u>The sum of the rate of release from the watershed liquid water storage plus the rate of net</u> <u>meteorological liquid water input to the watershed is decreasing.</u>
- c. <u>The net meteorological liquid water input to the watershed is not sufficient to replenish the</u> <u>liquid water storage in the watershed so that the flow continues to decrease.</u>
- d. It can be inferred from c that the watershed liquid water storage is decreasing.

In order to determine the receding period ( $T_0$ ), this study recommends that the "recent high peak" is a peak equal to or larger than 2 times of the mean annual discharge (MAD), "continuously decreasing" may not be strictly fulfilled and minor rises smaller than 1/2 MAD can be neglected, and "for a period" is the time from the "recent high peak" until the streamflow reaches 1/2 MAD.

Table 1 lists the average receding periods ( $\overline{T}_0$ ) for 10 coastal watersheds and 10 interior watersheds calculated from the resent 10 years of daily streamflow data from Water Survey of Canada (WSC). In Table 1, A is the watershed area, SQRT(A) is the square root of the watershed area, MAD is the mean annual discharge,  $\overline{T_0}$  is the average receding period, and WTS is the abbreviation of watershed. From Table 1, it can be seen that the receding periods for the interior watersheds are significantly longer than those for the coastal watersheds because most of streamflow peaks in the coastal watersheds are storm triggered and most of peaks in the interior watersheds are snowmelt dominated.

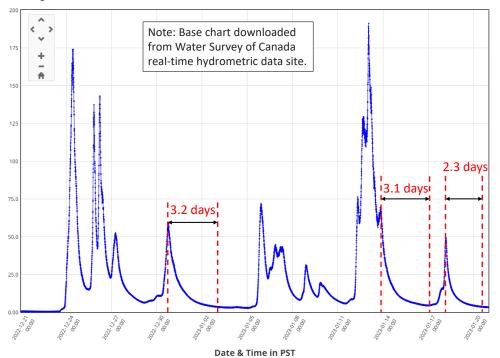

The above definition of low flow makes the low flow to be more predictable under climate change, without presetting a low flow period or predefining a threshold as long as the average receding period is determined with the historical flow data. For example, the watershed of TOFINO CREEK NEAR THE MOUTH (08HB086) has been experiencing more and more summer rain or storms during the dry season from July to August in recent years due to climate change. If it cannot be said that the entire July and August is the low flow or dry season, it can be said that the streamflow will drop back to the low flow regime approximately 3 days after a rainfall event or storm according to the average receding period given in Table 1. For the watershed of FRASER RIVER AT HOPE (08MF005), the annual peak may occur in any month of May, June or July, and it can be predicted that the low flow period will arrive about 100 days after the streamflow peaks based on the average receding period given in Table 1.

Figure 1 shows two extreme examples of the receding period  $T_0$ , the TOFINO CREEK NEAR THE MOUTH (08HB086) (A = 38.6 km<sup>2</sup>), for which  $T_0 = 2.3$  to 3.2 days for a period from December 21, 2022 to January 20, 2023, and the FRASER RIVER AT HOPE (08MF005) (A = 217,000 km<sup>2</sup>), for which  $T_0 = 96$ days in 2022. Figure 2 shows the linear correlations between the average receding period  $\overline{T_0}$  and the square root of watershed area for the 10 coastal watersheds and 10 interior watersheds listed in Tabel 1, respectively. It can be seen from Figure 2 that the average receding period  $\overline{T_0}$  is linearly correlated to the square root of watershed area with an R squared larger than 0.8 for both types of watersheds.

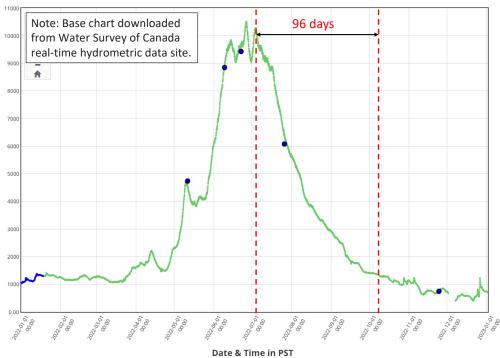
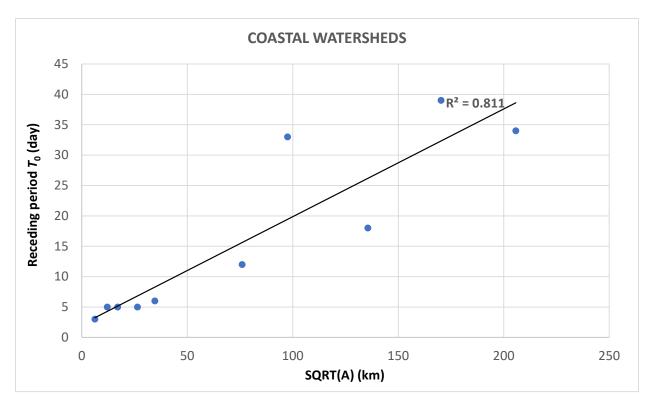
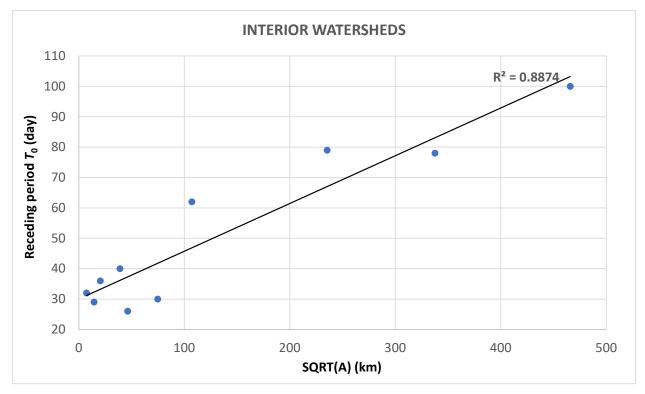

| STATION |                                                           | А      | SQRT(A) | MAD    | ½ MAD  | $\overline{T_0}$ |          |
|---------|-----------------------------------------------------------|--------|---------|--------|--------|------------------|----------|
| ID      | STATION NAME                                              | (km²)  | (km)    | (m³/s) | (m³/s) | (days)           | WTS      |
| 08HB086 | TOFINO CREEK NEAR THE<br>MOUTH                            | 38.6   | 6.2     | 6.8    | 3.4    | 3                | COASTAL  |
| 08GB013 | CLOWHOM RIVER NEAR<br>CLOWHOM LAKE                        | 147    | 12.1    | 15.4   | 7.7    | 5                | COASTAL  |
| 08MH147 | STAVE RIVER ABOVE<br>STAVE LAKE                           | 290    | 17.0    | 34.5   | 17.2   | 5                | COASTAL  |
| 08GF007 | WAKEMAN RIVER BELOW<br>ATWAYKELLESSE RIVER                | 698    | 26.4    | 78.1   | 39.1   | 5                | COASTAL  |
| 08GA071 | ELAHO RIVER NEAR THE<br>MOUTH                             | 1200   | 34.6    | 105.0  | 52.5   | 6                | COASTAL  |
| 08GE002 | KLINAKLINI RIVER EAST<br>CHANNEL (MAIN) NEAR<br>THE MOUTH | 5780   | 76.0    | 299.9  | 149.9  | 12               | COASTAL  |
| 08CG001 | ISKUT RIVER BELOW<br>JOHNSON RIVER                        | 9500   | 97.5    | 465.0  | 232.5  | 33               | COASTAL  |
| 08DB001 | NASS RIVER ABOVE<br>SHUMAL CREEK                          | 18400  | 135.6   | 806.1  | 403.1  | 18               | COASTAL  |
| 08CE001 | STIKINE RIVER AT<br>TELEGRAPH CREEK                       | 29000  | 170.3   | 421.3  | 210.6  | 39               | COASTAL  |
| 08EF001 | SKEENA RIVER AT USK                                       | 42300  | 205.7   | 911.6  | 455.8  | 34               | COASTAL  |
| 08NJ026 | DUHAMEL CREEK ABOVE<br>DIVERSIONS                         | 52.9   | 7.3     | 1.5    | 0.8    | 32               | INTERIOR |
| 08NG077 | ST. MARY RIVER BELOW<br>MORRIS CREEK                      | 208    | 14.4    | 7.1    | 3.6    | 29               | INTERIOR |
| 08NF001 | KOOTENAY RIVER AT<br>KOOTENAY CROSSING                    | 416    | 20.4    | 4.9    | 2.4    | 36               | INTERIOR |
| 08NG002 | BULL RIVER NEAR<br>WARDNER                                | 1520   | 39.0    | 32.5   | 16.3   | 40               | INTERIOR |
| 08NN026 | KETTLE RIVER NEAR<br>WESTBRIDGE                           | 2140   | 46.3    | 28.0   | 14     | 26               | INTERIOR |
| 08NL038 | SIMILKAMEEN RIVER NEAR<br>HEDLEY                          | 5580   | 74.7    | 48.6   | 24.3   | 30               | INTERIOR |
| 08NG065 | KOOTENAY RIVER AT FORT<br>STEELE                          | 11500  | 107.2   | 172.5  | 86.2   | 62               | INTERIOR |
| 08LF051 | THOMPSON RIVER NEAR<br>SPENCES BRIDGE                     | 55400  | 235.4   | 778.1  | 389    | 79               | INTERIOR |
| 08MC018 | FRASER RIVER NEAR<br>MARGUERITE                           | 114000 | 337.6   | 1456.9 | 728.5  | 78               | INTERIOR |
| 08MF005 | FRASER RIVER AT HOPE                                      | 217000 | 465.8   | 2720.4 | 1360.2 | 100              | INTERIOR |

Table 1. Average receding periods ( $\overline{T_0}$ ) for 10 coastal watersheds and 10 interior watersheds.

Discharge (unit values) (m<sup>3</sup>/s)




(a) TOFINO CREEK NEAR THE MOUTH (08HB086):  $T_0 = 2.3$  to 3.2 days for Dec. 21, 2022 – Jan. 20, 2023




Discharge (unit values) (m<sup>3</sup>/s)

(b) FRASER RIVER AT HOPE (08MF005):  $T_0 = 96$  days for 2022 Figure 1. Two extreme examples of  $T_0$  for BC watersheds.



(a) 10 coastal watersheds



(b) 10 interior watersheds

Figure 2. Correlations between average receding period  $\overline{T_0}$  and square root of watershed area.

### 3. Obstacles faced by low flow simulation with hydrological methods

From the above section, it clear that the magnitude of low flow is very small and sometimes close to zero. From the perspective of flow measurements, the low flow (discharge and water level) is sometimes so trivial or close to zero that it is negligible. The low flow discharge, which is also referred to as baseflow, is bottom parts of the high flow or flood hydrograph. Comparing with the high flow or flood, the baseflow is so small that sometimes it is only about the magnitudes of the measurement errors or forecast errors of any hydrological model. This is the first obstacle of the low flow simulation with hydrological methods.

There are mainly two categories of hydrological models, conceptual/lumped-sum models and physically based distributed models. For most conceptual/lumped-sum hydrological models, the baseflow is a preset constant, and the UBCWM (Quick and Pipes, 1977) is an example of these models. Therefore, this kind of hydrological models have no mechanism to simulate the changing low flow when it falls below the level of the baseflow. This is the second obstacle of low flow simulation with hydrological methods.

For physically based distributed hydrological models, the baseflow in a stream is mainly from the release of the groundwater, except the low flow in the downstream reach of a lake or reservoir, which is mainly from the release of the lake or reservoir. The Large-scale, Unified, and Optimization Model (LUOM) (Luo, 2007) is one example of this model. Practically, groundwater simulation, especially for large-scale watersheds, are faced with two critical difficulties, (1) lack of detail distributed aquifer parameters, and (2) severe deficiency of wells for groundwater observation (Luo, 2000 a). This is particularly true for BC that has a super large area (947,900 km<sup>2</sup>), which is the total size of France, Italy, Belgium, and the Netherlands. Nevertheless, BC has only 340 observation wells as part of the Provincial Groundwater Observation Well Network and 1,286 mapped aguifers (45,460 km<sup>2</sup>) to cover the entire province in 2023. Figure 3 is a snapshot of BC Groundwater Wells and Aquifers website (BC Gov., 2023 b), which shows the sparsity of observation wells (dark brown dots) and mapped aguifers (brown lines and filled patches). Furthermore, the hydraulic connection between streams and the aquifers which many these wells reside in are unknown, making groundwater-surface water relationships difficult to quantify. This sparse observation wells and mapped aquifers making accurate simulation of groundwater movements and releases to streams in most areas of BC almost impossible. Therefore, it is in turn almost impossible to accurately simulate low flows with distributed hydrological models in most parts of the province. Summarily, the third obstacle of low flow simulation with hydrological methods is the severe insufficiency of groundwater and aquifer data.

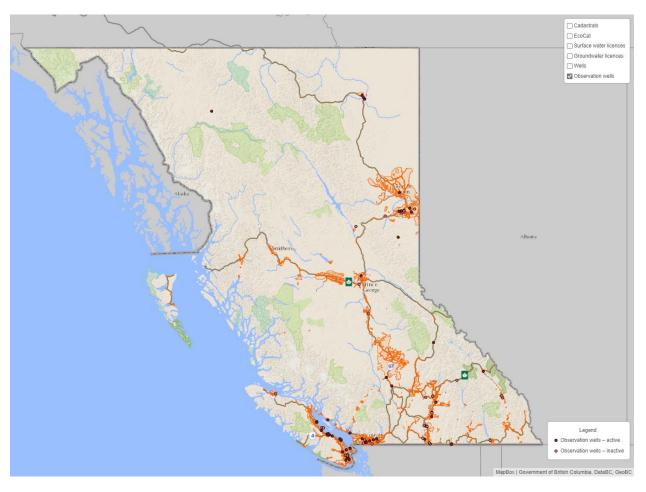



Figure 3. Snapshot of BC Groundwater Wells and Aquifers website showing sparsity of observation wells (dark brown dots) and mapped aquifers (brown lines and filled patches).

## 4. Fundamental assumption for mathematical methods for low flow forecasting

In order to avoid the obstacles faced by hydrological methods in low flow simulation, it is inevitable to turn to an alternative, empirical or mathematical methods. In Chapter 11 of the Manual on Low flow Estimation and Prediction (WMO, 2008), the recession analysis is classified as the commonly used non-hydrological method for short-term low flow forecasting models, which provide forecasts of low flow in the absence of rainfall between 1 and 20 days.

It sounds like that the recession analysis is a pure mathematical treatment of the flow data without any hydrological process. However, the streamflow is the combined effect of meteorological factors such as rainfall, snowmelt, and evapotranspiration, and watershed physical factors (geological and geomorphological factors) such as the watershed area and the aquifer storage and hydraulic conductivity. For example, the streamflow rises when there is rainfall and/or snowmelt input, and the streamflow recedes acceleratingly when the evapotranspiration rate increases in the watershed; the streamflow recedes faster in a smaller watershed with less groundwater storage than in a larger watershed with more groundwater storage (see Figure 1 in Section 2). This means that the flow data actually includes meteorological signals and watershed physical factors. Therefore, it is possible to accurately simulate the streamflow with flow data input only during the low flow period, employing an appropriate empirical or mathematical equation, and assuming

 The sum of the water release rate from the watershed liquid water storage plus the net meteorological liquid water input rate to the streamflow is a function of time and parameters. Equation (4) can be re-written as

$$Q = \Phi + \Psi = f(p_i, t)$$

#### in which $p_i$ , i = 1 to N are parameters of the function.

#### 2) The function parameters $p_i$ remain constant for a certain period.

This is the fundamental assumption for the ELF Model. When the low flow conditions meet this assumption, the forecast is accurate, otherwise, the forecast is inaccurate.

It must be emphasised that this assumption does not prescribe that net meteorological water input rate must be equal to 0. This rate could be positive, 0 or negative. For this reason, the ELF Model can be run all year round and sometimes can even accurately forecast minor rises in the low flow, especially for lake water levels.

It must be also pointed out that the function parameters are constant only for a certain period but not all-time constants. This gives the ELF Model flexibility to adjust it forecasts based on the most recently available flow data.

### 5. Basic equations of mathematical method for low flow simulation and extended characteristic of low flow

It was found that the basic behaviour of the daily mean flow (Q(t)) on the falling limb of the hydrograph is mainly characterized by the following exponential recession equation (Reed and Warne, 1985; WMO, 2008)

$$Q(t) = Q_0 e^{-\alpha t}$$

(12)

(11)

in which t is time,  $\alpha$  is a positive constant, e is the base of the natural logarithm, and  $Q_0$  is the initial discharge when t = 0.

Equation (12) is a time function with three parameters,  $Q_0$ , e, and  $\alpha$ , which are all constants, and therefore fulfills the fundamental assumption of the ELF Model given in the above section.

Conducting logarithmic calculation on both sides of Equation (12), simplifying notation Q(t) to Q,

and after some rearrangements, Equation (12) can be rewritten as

$$ln(Q) = -\alpha t + ln(Q_0)$$

Carrying out derivative calculation on both side of Equation (13) with respect to time t

$$\frac{d}{dt}[ln(Q)] = \frac{d}{dt}[-\alpha t + ln(Q_0)]$$
(14)

$$\frac{1}{Q}\frac{dQ}{dt} = -\alpha$$

Or

$$\frac{dQ}{dt} = -\alpha Q$$

| - 1 | 1 | 6   | ۱.  |
|-----|---|-----|-----|
| ١.  |   | - U | ) ] |
|     |   | -   | '   |

(17)

(15)

(13)

As both  $\alpha$  and Q are positive, the physical meaning of Equation (16) is that the streamflow is decreasing. This is the first characteristic of low flow summarized in Section 2.

Carrying out derivative calculation on both sides of Equation (16) with respect to time *t* and substituting Equation (16) in it, the second-order derivative of Q of time is given by

$$\frac{d^2Q}{dt^2} = \alpha^2 Q$$

The physical meaning of Equation (17) is that the slope of the change of streamflow (dQ/dt) is increasing. For the change of streamflow that is always negative or  $dQ/dt \le 0$ , "increasing" actually means that the decreasing rate of the streamflow becomes smaller and smaller, or the decreasing trend becomes slower and slower with time. This is an extended characteristic of low flow.

Summarily, the first characteristic of low flow is extended as the following,

a. <u>The streamflow is decreasing, and the decreasing rate of the streamflow becomes smaller and</u> <u>smaller with time.</u>

The falling limb of streamflow data used in this study always shows this characteristic of low flow, and the hydrographs shown in Figure 1 in Section 2 are two examples.

In this study, quite a number of flow stations have water level data only, and for those stations with both discharge and water level data, it is anticipated that the model can forecast both discharges and water levels. In order to use the water level data to produce low flow forecasts, it is necessary to prove that the water level h in the low flow regime also has the same characteristics shown in Equations (16) and (17).

During the low flow period, the flow rate (q) along the groundwater releasing cross section  $A_G$  can

be written in the following partial differential form of the Darcy's Law (Luo, 2000 b)

$$q = K \frac{\partial h}{\partial x}$$

(18)

(19)

in which K is the hydraulic conductivity of the aquifer and assumed constant along the riverside during the low flow period, h is the water level of the groundwater and the water level of the streamflow, and xis the distance from the stream which is perpendicular to the stream. Assuming  $\partial h/\partial x = S_0$ , which is the slope of the bedrock and is a constant during the low flow period, and  $A_G = Bh$ , B is the width of the groundwater releasing cross section, the discharge from the groundwater release can be written as  $Q = qA_G = (KS_0B)h = \beta h$ 

in which  $\beta$  is a constant.

Substituting Equation (19) into Equations (16) and (17), the following equations can be derived

$$\frac{dh}{dt} = -\alpha h$$
(20)
$$\frac{d^2h}{dt^2} = \alpha^2 h$$
(21)

This means that the water level during the low flow period follows the same receding trend as the discharge that can be simulated with Equation (12) by substituting Q with h. Hereinafter, descriptions about "low flow" or "flow" means discharge and water level, and all equations for Q (discharge) are also valid for H (water level), if not explicitly stated.

### 6. Solving exponential recession equation for overdetermined system

Equation (13) is a linear equation with the following form

$$y = ax + b \tag{22}$$

noticing that

$$\begin{cases} y = ln(Q) \\ x = t \\ a = -\alpha \\ b = ln(Q_0) \end{cases}$$

(23)

If there is a series of observations (e.g., 30 days of data), Equation (22) becomes an overdetermined system. Assuming f is a notation of the function for Equation (22)

$$f = y = ax + b \tag{24}$$

The least squares linear fitting method is adopted to find the theoretical curve for the observed data points of low flow

$$\begin{cases} R^{2} = \sum_{i=1}^{n} [y_{i} - f(x_{i}, a_{1}, a_{2}, \dots, a_{j}, \dots, a_{m})]^{2} \\ \frac{\partial(R^{2})}{\partial a_{i}} = 0, i = 1 \text{ to } n \end{cases}$$
(25)

in which  $R^2$  is the square of the vertical deviations, *i* is the sequence of the data points, *n* is the total number of data, *j* is the sequence of independent parameters  $a_j$ , and *m* is the total number of parameters in the function.

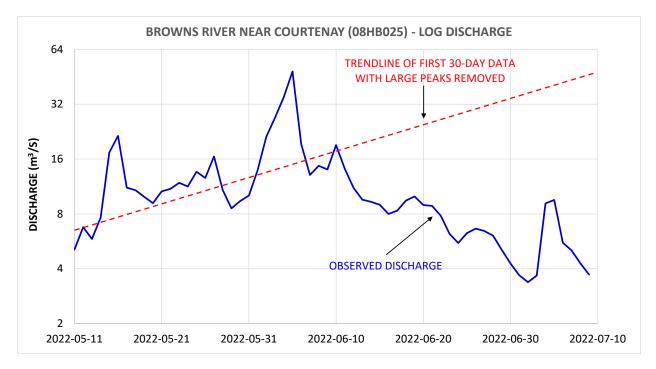
In the case of Equation (24), m = 2,  $a_1 = a$ , and  $a_2 = b$ . Parameters a and b can be found with

$$\begin{cases} a = \frac{\sum_{i}^{n} (x_{i}y_{i}) - n\bar{x}\bar{y}}{\sum_{i}^{n} x_{i}^{2} - n\bar{x}^{2}} \\ b = \frac{\bar{y}\sum_{i}^{n} x_{i}^{2} - \bar{x}\sum_{i}^{n} (x_{i}y_{i})}{\sum_{i}^{n} x_{i}^{2} - n\bar{x}^{2}} \end{cases}$$

where

$$\begin{cases} \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \\ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \end{cases}$$

(27)


(26)

# 7. Twelve-step and twelve-scenario scheme for meeting challenges posed by data issues of noises and non-logarithmic flow and for analogues to ensemble forecasts

It is noticed that, in the real world, the actual low flow data always include noises, which are sharp rises and steep falls caused by sudden changes of meteorological conditions, such as changes in the input of rainfall, snowmelt or glacier melt, and increasing evapotranspiration due to high temperatures, and measurement errors in the flow data. This is the so-called "data noise issue" in the low flow simulation. Meanwhile, the low flow data, especially the water level data, may not always follow the trend governed by Equation (12), or the logarithmic low flow time series are not always linear. This is

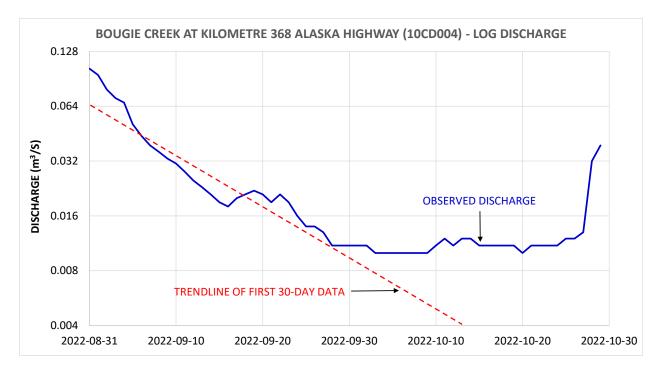
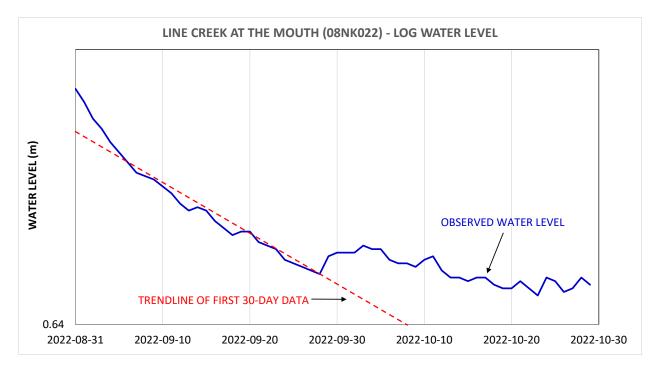

the so-called "non-linear logarithmic flow issue" in the low flow simulation. These issues of data noises and non-linear logarithmic flows in the actual low flow data prevent low flow models using Equations (12) to (27) from producing accurate forecasts.

Figure 4 shows three time series of discharges or water levels for a 60-day period, (a) is a time series with significant data noises, (b) and (c) are time series of non-linear logarithmic discharges and water levels, respectively. The red dash lines are the trendlines of the flow data from the first 30 days, which would never give any correct forecast for the flows of the second 30 days due to the data noises issue and the non-linear logarithmic flow issue, let alone an accurate forecast.




(a) Significant data noises – BROWNS RIVER NEAR COURTENAY (08HB025) (A = 87.9 km<sup>2</sup>) (May 11 to July 9, 2022)

Figure 4. Examples of low flow data issues (continued on next page).



(b) Non-linear logarithmic flow – daily discharge for BOUGIE CREEK AT KILOMETRE 368 ALASKA HIGHWAY (10CD004) (A = 335 km<sup>2</sup>) (August 31 to October 29, 2022)



(c) Non-linear logarithmic flow – daily water level for LINE CREEK AT THE MOUTH (08NK022) (A = 138 km<sup>2</sup>) (August 31 to October 29, 2022)

Figure 4. Examples of low flow data issues (continued).

To filter out flow data noises, a baseflow separation method was developed in the United Kingdom (Gustard, 1983; Gustard et al., 1992). In this method, the flow data is split into five-day non-overlapping consecutive periods, for which the minimums are found. The turning points are searched from the minimums, and then the baseflow hydrograph is obtained by connecting the turning points. Checking with Table 1 in Section 2, it is obvious that the above five-day baseflow separation method works well for the coastal watersheds that have an area from 100 to 1000 km<sup>2</sup>, which have a receding period about 5 days. However, this method does not make sense for those watersheds with a receding period short or longer than 5 days, especially for the interior watersheds, in which the receding period is much longer than 5 days (26 days and longer, see Table 1).

In order to meet the challenges posed by the flow data issues of data noises and non-linear logarithmic flows, a numerical scheme, the so-called "twelve-step and twelve-scenario scheme" based Equations (12) to (27), is developed in this study. The scheme not only is more appropriate for BC watersheds with respect to filtering out data noises, but also produces forecast maximums and minimums which are analogues to ensemble forecasts. In the ELF Model, a time series of 30-day observed flows is used to produce a 30-day forecast using a time step of one day for the immediate 30 days. The scheme is given in detail below.

**Step 1.** Preparing the input data – the observed daily discharge  $(Q_i)$  and water level  $(H_i)$  so that

$$\begin{cases} Q_i = Q_{obsi} > 0\\ H_i = H_{obsi} - H_{min} > 0 \end{cases}$$

where  $Q_{obsi}$  is the observed daily average discharge on day *i*, eliminating 0 and negative values,  $H_{obsi}$  is the observed daily average water level on day *i*, and  $H_{min}$  is the historical minimum water level. Water levels for some flow stations in BC have negative datum and may be negative. The treatment in Equations (28) is necessary to ensure that the values of observed discharges and water levels are positive so that logarithmic calculations for these data are valid.

**Step 2.** Calculating the logarithms for observed discharges and water levels to the base of 10,  $\log Q_i$  (and  $\log H_i$ ). In this study, the logarithm with a base of 10 rather than the natural logarithm is adopted because some of the discharges are very large, as large as 10,000 m<sup>3</sup>/s in the summer for the FRASER RIVER AT HOPE (08MF005), and the ELF Model is updated for all the year round. It can be proved that Equations (16) and (17) are still true for the logarithms of discharges and water levels with a base of 10.

**Step 3.** Calculating 5-day moving averages of  $\log Q$  (and  $\log H$ ) day by day for the observed discharges and water levels (equations for the water level have the exact same format)

$$\left(\overline{\log Q}\right)_j = \frac{1}{5} \sum_{i=d}^{d+4} \log Q_i$$

(29)

(28)

in which *j* is the time sequence of the 5-day moving average, and *d* is a day of the observed daily time series. And if *J* is the total data points of  $(\overline{\log Q})_j$  for a time series of observed discharges or water levels for a total days of D, J = D - 4. In this study, D = 30, and thus J = 26.

**Step 4.** Calculating the increment of the 5-day moving average of  $(\overline{\log Q})_i$ 

$$\left(\Delta \overline{\log Q}\right)_{l} = \left(\overline{\log Q}\right)_{j+1} - \left(\overline{\log Q}\right)_{j} = \frac{1}{5}\left(\log Q_{i+5} - \log Q_{i}\right)$$
(30)

in which *l* is the time sequence of  $\Delta \overline{\log Q}$ . If *L* is the total number of  $(\Delta \overline{\log Q})_l$ , L = J - 1 = 25 in this study.

 $\Delta \log \overline{Q}$  is the difference form of the time derivative of  $\overline{\log Q}$ . Carrying out derivative calculation on both sides of Equation (22), the following equation can be derived if  $\Delta t = 1$  (day)

$$\Delta \log Q \approx d(\log Q) \Delta t \approx dy = a$$
(31)

Equation (31) means that  $\Delta \overline{\log Q}$  is a constant.

However, as pointed out at the beginning of this section, the flow data may have the non-linear logarithmic flow issue. This means that the observed daily time series of discharges or water levels may not strictly fulfill Equations (12) and (22). In order to meet the challenge posed by the non-linear logarithmic flow issue, it is assumed that the derivative of the averaged logarithmic flow (discharge or water level) is also a linear line rather than a constant,

$$\Delta \overline{\log Q} \approx d(\overline{\log Q}) \Delta t \approx dy = ax + b$$
(32)

Of course, when the observed data of  $\Delta \overline{\log Q}$  is fitted in Equation (32) using Equations (26) and (27), Equation (32) will reduce to Equation (31) if it is found that a = 0 and b is re-noted as a.

**Step 5.** Calculating the increment of  $(\Delta \overline{\log Q})_{I}$ 

$$\left(\Delta\Delta\overline{\log Q}\right)_{n} = \left(\Delta\overline{\log Q}\right)_{l+1} - \left(\Delta\overline{\log Q}\right)_{l}$$
(33)

in which *n* is the time sequence of  $\Delta\Delta \log Q$ . If *N* is the total number of  $\Delta\Delta \log Q$ , N = L - 1 = 24 in this study.

 $\Delta\Delta \overline{\log Q}$  is the difference form of the time derivative of  $\Delta \overline{\log Q}$ . If derivative calculation for both sides of Equation (31) is carried out, the following equation can be derived when  $\Delta t = 1$  (day)

$$\Delta\Delta\overline{\log Q} \approx d\left(d\left(\overline{\log Q}\right)\right)\Delta t \approx d(dy) = da = 0$$

(34)

And if derivative calculation for both sides of Equation (32) is carried out, the following equation

can be derived when  $\Delta t = 1$  (day)

$$\Delta \Delta \overline{\log Q} \approx d\left(d(\overline{\log Q})\right) \Delta t \approx d(dy) = d(ax+b) = a$$

Equations (34) and (35) together mean that  $\Delta\Delta \log Q$  is a constant, either 0 or non-zero. This is a very important characteristic of low flow for the ELF Model in this study.

**Step 6.** <u>Scenario 1</u> – Fitting 25 points of  $\Delta \log Q$  in Equation (32) using Equations (26) and (27). Once *a* and *b* are determined, the last five data points of  $\log Q_i$  for i = 26 to 30 is used for bias correction.

$$\begin{cases} \Delta \log Q_{simi} = a(i-5) + b \\ \log Q_{simi} = \log Q_{simi-1} + \Delta \log Q_{simi} \\ \log Q_{sim0} = \log Q_{obs25} \\ Bias = \frac{1}{5} \left( \sum_{i=26}^{30} \log Q_{simi} - \sum_{i=26}^{30} \log Q_{obsi} \right) \end{cases}$$

$$(36)$$

in which  $\log Q_{sim}$  is the model simulated logarithmic flow (discharge or water level),  $\Delta \log Q_{sim}$  is the simulated increment of  $\log Q_{sim}$ ,  $\log Q_{obs}$  is observed logarithmic flow, and *Bias* is the deviation between the means of observation and simulation of the last 5 days, which is the bias correction.

After the bias correction is calculated, the model forecast  $Q_j$  (j = 1 to 30) (discharge and water level) for the next 30 days can be estimated with the following equations

$$\begin{cases} \Delta \log Q_{simj} = a(j+30) + b\\ LQ_j = \log Q_{simj} = \log Q_{simj-1} + \Delta \log Q_{simj}\\ \log Q_{sim0} = \log Q_{obs30}\\ Q_j = 10^{(LQ_j - Bias)} \end{cases}$$

(37)

(35)

In order to reduce unrealistic forecasts,  $\Delta \log Q_{sim}$  in both Equations (36) and (37) is subject to restrictions as given in the following equations

$$\begin{cases} \Delta \log Q_{simj} \le 0.1 \,\Delta \log Q_{sim0j} , & \text{if } \Delta \log Q_{sim0j} > 0 \\ \frac{\Delta \log Q_{simj}}{\Delta \log Q_{simj-1}} \le 1.01, \text{if } \Delta \log Q_{simj} , \Delta \log Q_{simj-1} < 0 \end{cases}$$

(38)

in which  $\Delta \log Q_{sim0j}$  is the original estimation with Equation (37). Equations (38) mean that the final forecast rate of rise in the logarithmic flow only takes 10% of the simulated rate of rise into account, and the forecast drops in the logarithmic flow must not be accelerated by a rate greater than 1%.

It was found later (as of July 17, 2023, when this report was being compiled) that the original estimate of  $\Delta \log Q_{sim}$  is able to simulate rises for water levels accurately for some of the water-level-only stations. Therefore, the first half of Equations (38) is modified as below

$$\begin{cases} \frac{\Delta \log Q_{simj}}{\Delta \log Q_{simj-1}} \le 1, & \text{if } \Delta \log Q_{simj}, \Delta \log Q_{simj-1} > 0\\ \frac{\Delta \log Q_{simj}}{\Delta \log Q_{simj-1}} \le 1.01, & \text{if } \Delta \log Q_{simj}, \Delta \log Q_{simj-1} < 0 \end{cases}$$
(39)

The modification in Equations (38), or the first equation of Equations (39) means that the forecast rises for the logarithmic flow must not be accelerated.

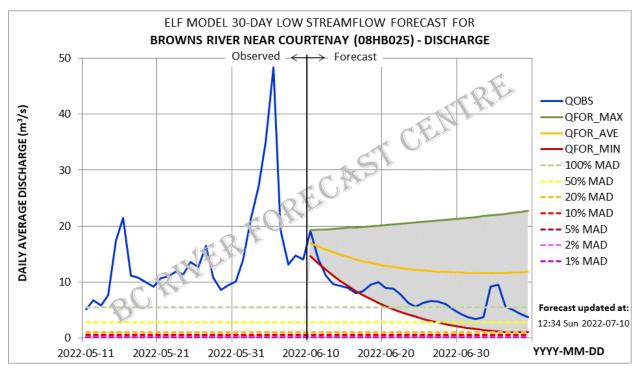
**Step 7.** Calculating the mean of  $(\Delta\Delta \overline{\log Q})_n$  (n = 1 to 24) and the deviation of each data point from the mean, ranking  $(\Delta\Delta \overline{\log Q})_n$  by the deviation in the order from the smallest to the largest. Equations (33) and (34) indicate that  $(\Delta\Delta \overline{\log Q})_n$  should be a 0 or a non-zero constant. However, the actual data may not strictly fulfill these equations. The ranks will be used by the next step.

**Step 8.** <u>Scenario 2 to 8</u> – Eliminating data points of  $(\Delta \overline{\log Q})_l$  (l = 2 to 25) with the 2, 4, 6, 8, 10, 12, and 14 largest deviations of  $(\Delta \Delta \overline{\log Q})_n$  (n = 1 to 24) from the mean found in Step 7, and fitting the rest of data points of  $\Delta \overline{\log Q}$  excluding the first data point (number of data points for each scenario is 22, 20, 18, 16, 14, 12, and 10, respectively) in Equation (32) using Equations (26) and (27). The first data point of  $\Delta \overline{\log Q}$  is not used because  $(\Delta \Delta \overline{\log Q})_n$  has one data point fewer than  $\Delta \overline{\log Q}$ . Once *a* and *b* are found, the model forecast  $Q_j$  (j = 1 to 30) (discharge and water level) for the next 30 days can be estimated with Equations (36) to (39) given in Step 6.

**Step 9.** <u>Scenario 9</u> – Fitting the 10 data points of  $(\Delta \overline{\log Q})_l$  in the last 15 days (l = 11 to 25), which have the minimum deviations of  $(\Delta \Delta \overline{\log Q})_n$  (n = 10 to 24) from the mean, in Equation (31). Or, fitting the same data in Equation (32) with a = 0, Equation (26) reduces to

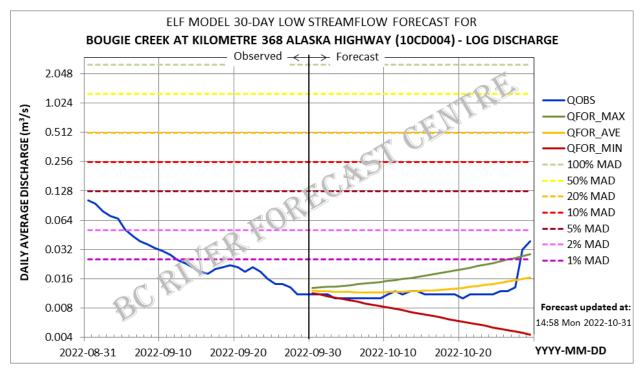
$$\begin{cases} a = 0 \\ b = \bar{y} \end{cases}$$

(40)

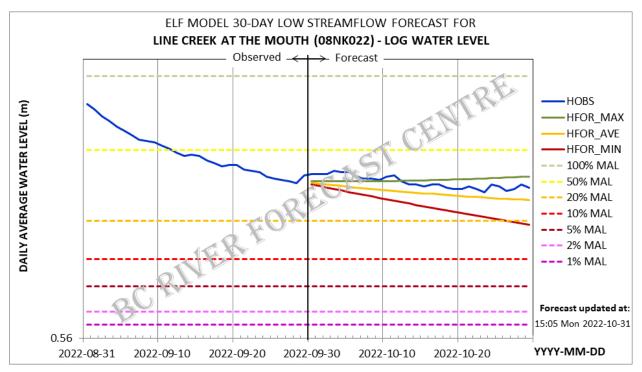

The model forecast  $Q_j$  (j = 1 to 30) (discharge and water level) for the next 30 days also can be estimated with Equations (36) to (39) given in Step 6.

**Step 10.** <u>Scenario 10 to 12</u> – Fitting the last 10, 5, and 2 data points of  $(\Delta \log Q)_l$  ( $l_{10} = 16$  to 25;  $l_5 = 21$  to 25;  $l_2 = 24$  to 25) in Equation (31), or Equation (32) with Equation (40), to estimate *a* and *b*.

Because these three scenarios use fewer data points from the last days and no data points with noises are excluded, *b* estimated with Equation (40) could be too large. Therefore, the largest *b* of these three scenarios is cut to its half, the second largest *b* is restricted to a value which is not greater than 1.1 times of the modified largest *b*, and the smallest *b* must not be larger than 1.1 times of the modified second largest *b*. These three scenarios ensure that the ELF Model captures the latest trends of the observed flow to increase the chances of accurate forecasts.


**Step 11.** Finding the forecast maximum and minimum from the 12 scenarios for each day of the 30day forecasting period, and the forecast average is the average of the forecast maximum and minimum. **Step 12.** Restricting the forecast maximum and minimum and recalculating the forecast average with the restricted forecast maximum and minimum. When there was a recent rainfall/melt event, the forecast rise and/or drop may be significantly affected by the event and may not be realistic. In order to reduce the forecast errors, the forecast maximum and minimum are restricted to certain ranges. In this study, a recent rainfall/melt event is defined as the case when the maximum observed daily flow in the latest 15 days is 3 times of the minimum observed daily flow in the past 30 days. "Flow" may also be water level  $H_i$  defined by Equation (28) in Step 1. In this case, the forecast maximum must not be larger than the maximum observed daily flow in the latest 15 days if the forecast flow is rising, and the forecast minimum must not be smaller than 20% of the observed minimum daily flow in the past 30 days if the forecast flow is dropping.

With this "twelve-step and twelve-scenario scheme," the ELF Model is able to accurately forecast the flows for the second 30 days by using the observed flows from the first 30 days in the examples of flow time series with the data noise issue and non-linear logarithmic flow issue shown in Figure 4 at the beginning of this section. Figure 5 shows the ELF Model operational outputs of comparisons of the model forecasts and the observed hydrographs.




(a) Significant data noises – BROWNS RIVER NEAR COURTENAY (08HB025) (forecast period: June 10 to July 9, 2022)

Figure 5. Examples of ELF Model accurate forecasts for observed flows with data issues (continued on next page).



(b) Non-linear logarithmic flow – daily discharge for BOUGIE CREEK AT KILOMETRE 368 ALASKA HIGHWAY (10CD004) (A = 335 km<sup>2</sup>) (forecast period: September 30 to October 29, 2022)



(c) Non-linear logarithmic flow – daily water level for LINE CREEK AT THE MOUTH (08NK022) (A = 138 km<sup>2</sup>) (forecast period: September 30 to October 29, 2022)

Figure 5. Examples of ELF Model accurate forecasts observed flows with data issues (continued).

### 8. Products of ELF Model

The ELF Model generates a series of products in one run as follows,

(1) a GIS map with color coded markers. The color schemes are related to the forecast minimum, average, or maximum discharges comparing with the mean annual discharge (MAD) for stations which have both discharge and water level data, or the forecast minimum, average, or maximum water levels comparing with the mean annual water levels (MAL) for stations which have only water level data. Figure 6 is a Maphub GIS map of the ELF Model forecast updated at 10:44 am August 8, 2023, (a) is the map with the color-coded markers for the forecast minimum (default), and (b) shows the statistics of use of the map layer in the past 12 month (August 9, 2022 to August 9, 2023), showing a total visits of 19,133. The maximum number of daily accesses is 573 on July 12, 2023, and the largest number of monthly access occurs in July of the year (5,495 visits, more than 1/4 of the total annual access).

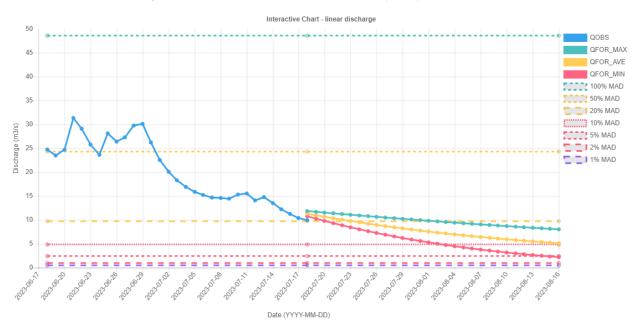
(2) interactive charts of forecast hydrographs of discharges and/or water levels. The vertical (*y*) axes of these charts can be toggled between linear and logarithmic scales. Very small discharges or water levels are easier to read in the charts with a logarithmic *y* axis. In an interactive chart, the exact values of data points in the hydrographs can be displayed when the mouse hovers over the data points. Figure 7 (a) to (d) are examples of interactive charts of discharges and water levels with linear and logarithmic *y* axes.

(3) static charts of forecast hydrographs of discharges and/or water levels. Static charts are convenient for presentation purposes. Figure 8 (a) to (d) are examples of static charts of discharges and water levels with linear and logarithmic *y* axes.

(4) forecast verifications for the previous month and a similar period of the previous year. After the ELF Model has finished generating forecasts for the current day, it uses 30 days of observed flow data starting from the same day in the previous month as the current day or the closest day in the previous month to the current day to generate a 30-day "forecast" for each station and plots the "forecast" and the observed hydrographs on the same chart. A link for comparison of the forecast and the observed flow for a similar period in the previous year are also provided on the website. These comparisons of previous forecasts and observed flows provide a visual verification of the model forecast accuracy for a station. Figures 9 and 10 (a) to (b) are examples of static charts of these comparisons.

(5) text (csv) files of the daily forecast. The ELF Model also generates a text (csv) file for each station which includes the forecast flow (discharge and/or water level) for the next 30 days and the observed flow for the immediate recent 30 days. If the forecast is for verification, the text (csv) file also has additional 30 days of observed flow for the forecasting period.

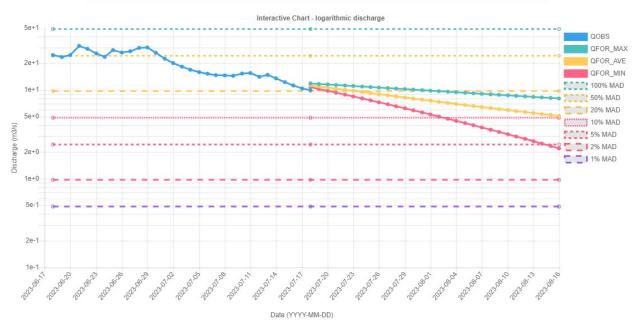
As of July 27, 2023, the ELF Model forecast webpages also provide links to the statistical bar charts of the ELF Model historical forecast accuracy so that users may have a better idea about the model forecast accuracy. This will be discussed in detail in Section 9.




(a) Maphub GIS map of ELF Model (<u>http://bcrfc.env.gov.bc.ca/lowflow/map\_elf.html</u>)

| Past 12 Months \$     |
|-----------------------|
|                       |
|                       |
|                       |
| 9                     |
|                       |
|                       |
|                       |
| 24 Jul 7 Jul 20 Aug 2 |
| za Jurz Jurzo Augiz   |
|                       |

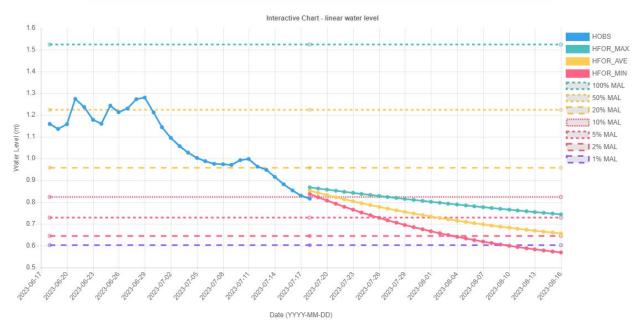
(b) Statistics of use of the map layer in past 12 months


Figure 6. A Maphub GIS map of ELF Model forecast updated on Augst 8, 2023



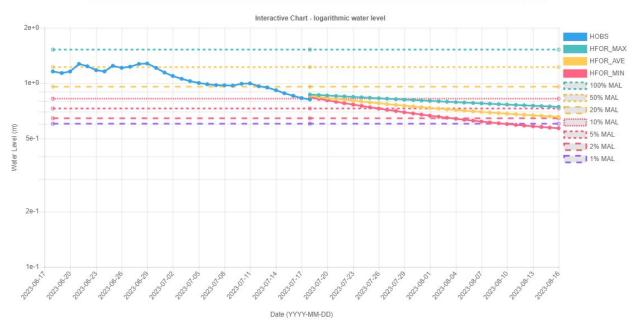
ELF Model 30-Day Low Streamflow Forecast for SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) - Issued at: 07:28 AM Tue Jul 18, 2023

(a) Linear discharge



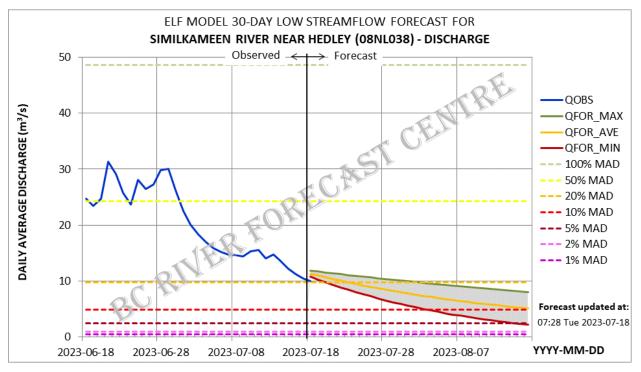



(b) Logarithmic discharge

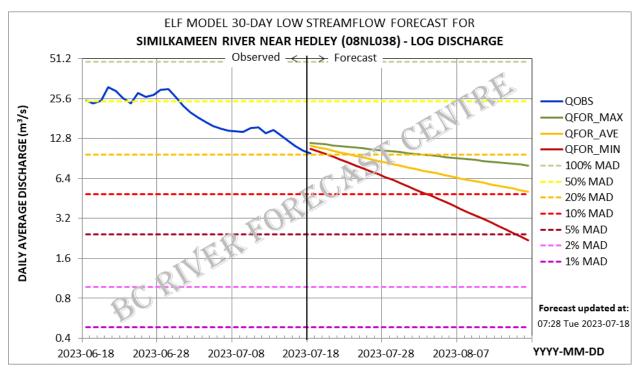

Figure 7. Interactive charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) (continued on next page.)





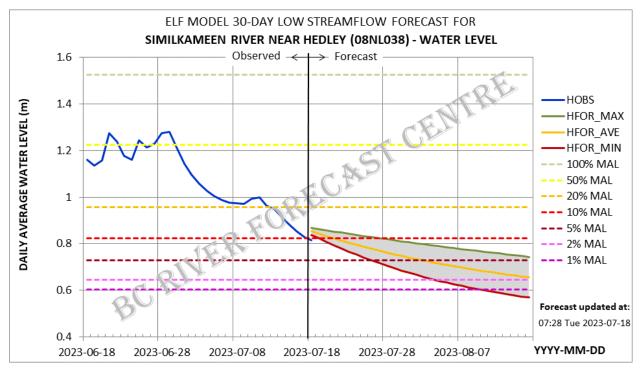

(c) Linear water level

ELF Model 30-Day Low Streamflow Forecast for SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) - Issued at: 07:28 AM Tue Jul 18, 2023

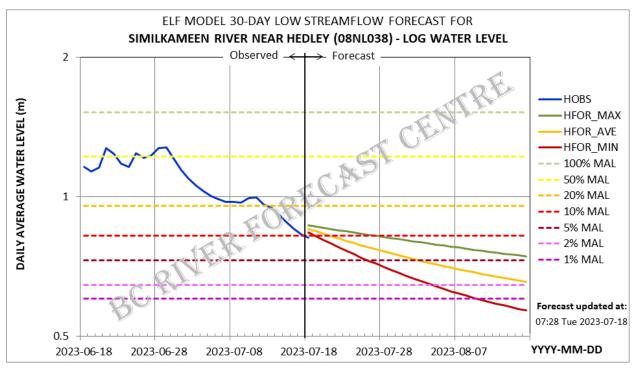



(d) Logarithmic water level

Figure 7. Interactive charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) (continued.)

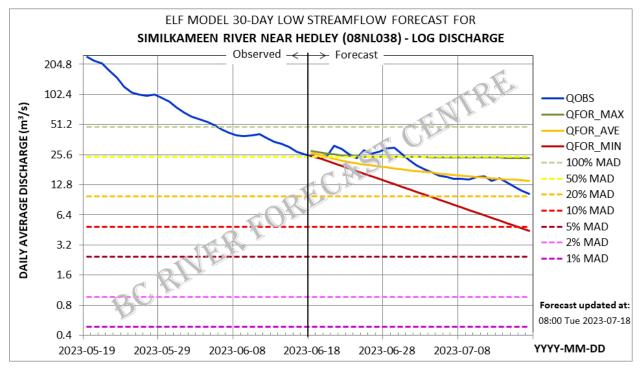



(a) Linear discharge

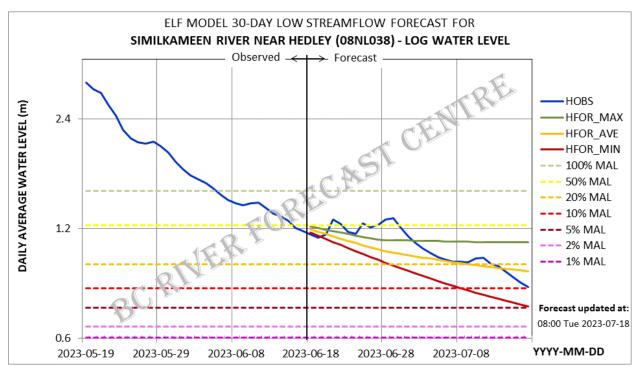



<sup>(</sup>b) Logarithmic discharge

Figure 8. Static charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) (continued on next page.)

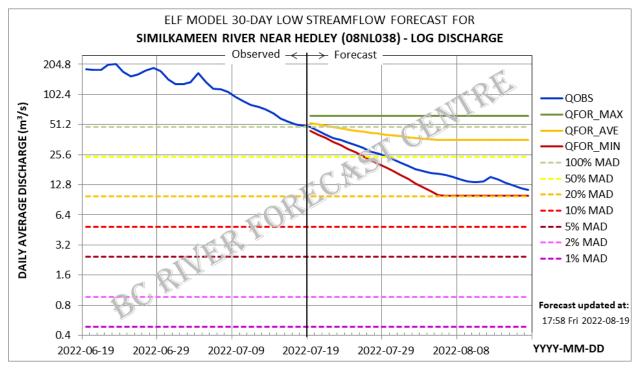



(c) Linear water level

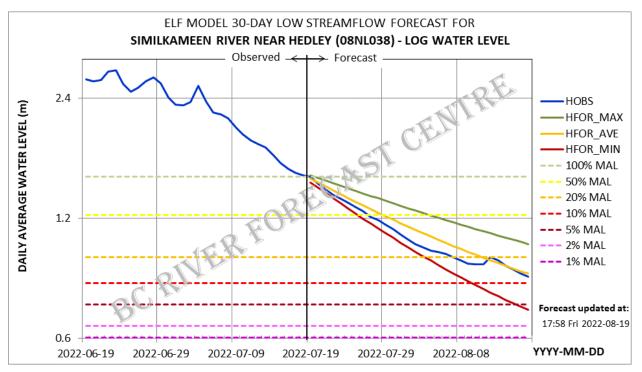



<sup>(</sup>d) Logarithmic water level

Figure 8. Static charts of ELF Model forecast – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038) (continued.)




(a) Logarithmic discharge




<sup>(</sup>b) Logarithmic water level

Figure 9. Static charts of verification of ELF Model forecast for previous month – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038)

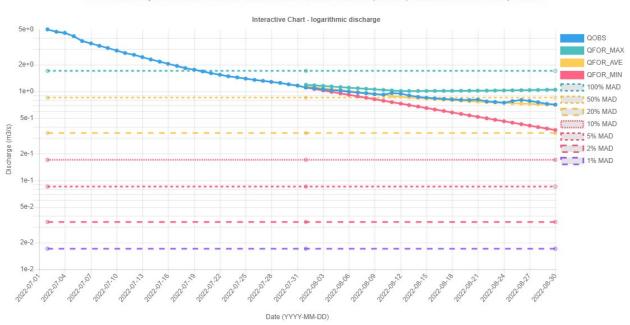


(a) Logarithmic discharge



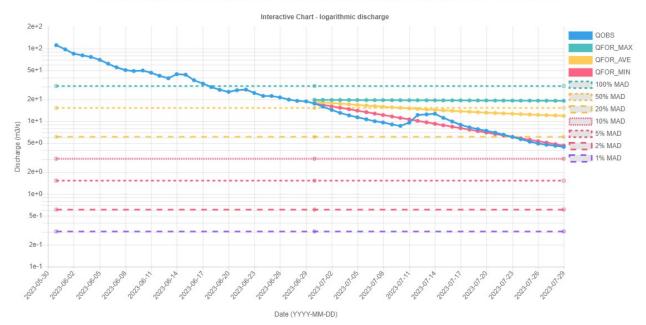
<sup>(</sup>b) Logarithmic water level

Figure 10. Static charts of verification of ELF Model forecast for a similar period in previous year – SIMILKAMEEN RIVER NEAR HEDLEY (08NL038)


### 9. Evaluation of ELF Model forecast accuracy

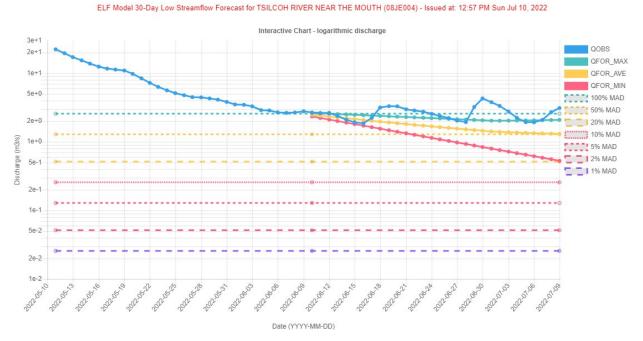
The ELF Model forecasts are analogues to ensemble forecasts and traditional statistical methods may not be appropriate for forecast accuracy evaluation. Meanwhile, the ELF Model forecasts are low flows, which's magnitude is very small or close to zero in some cases. Using the traditional statistical equations originally for flood forecast accuracy evaluation such as used in the CLEVER Model (Luo, 2015; Luo, 2021) for low flow forecast accuracy evaluation would give unfair results which may include significant bias. In these evaluation equations, any noises in the observed flow data triggered by rainfall events may result in significant errors due to the very small denominators in the evaluation equations.

In this study, a different approach is employed to evaluate the model forecast accuracy – how the forecast maximums and the minimums accommodate the observed flows. The forecast is said accurate if one of the following conditions is fulfilled.

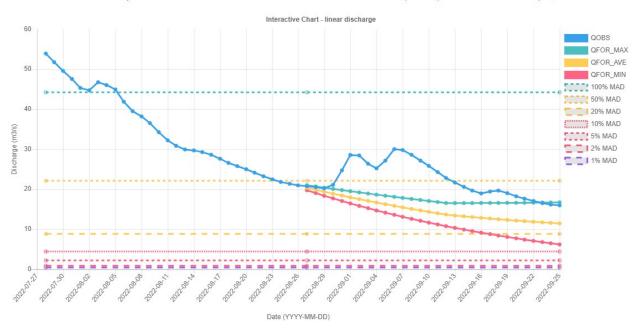

- (1) The forecast is first said accurate if all the observed flows (daily discharges or water levels) fall in between the forecast maximums and minimums in the 30-day forecast period (Figure 11 (a)).
- (2) Two thirds (2/3) of the observed data points (daily discharges or water levels) fall in between the forecast maximums (+10%) and minimums (-10%). In this study, there is a total of 30 days of forecast at a daily interval, therefore the forecast is said accurate if 20 observed flows fall in between the forecast maximums (+10%) and minimums (-10%) (Figure 11 (b)).
- (3) One third (1/3) of the observed data points (daily discharges or water levels), which are the lowest during the forecast period, fall in between the forecast maximums (+10%) and minimums (-10%). There is a total of 30 days of forecast in this study, therefore the forecast is said accurate if the 10 lowest observed flows fall in between the forecast maximums (+10%) and minimums (-10%) (Figure 11 (c)). This is because the ELF Model is a low flow forecasting model, and the accurate forecasts of the lowest flow are more important.
- (4) Three fifths (3/5) out of the last 5 observed data points (daily discharges or water levels) fall in between the forecast maximums (+10%) and minimums (-10%). This means that the forecast is said accurate if 3 days of the observed flows in the last 5 days of the 30-day forecast period fall in between the forecast maximums (+10%) and minimums (-10%) (Figure 11 (d)). This is because the ELF Model is aiming at the medium-term (30-day) low flow forecast, and the forecasts for the latest days are more important.

For water levels, the 10% increase to the forecast maximums or decrease to the forecast minimums is calculated with the forecast water level subtracting the historical minimum water level ( $H_{min}$ ), and the 10% increase or decrease must not exceed 10 cm.




ELF Model 30-Day Low Streamflow Forecast for ARROW CREEK NEAR ERICKSON (08NH084) - Issued at: 05:33 PM Thu Sep 01, 2022

(a) All observed flows falling in between forecast maximums and minimums




ELF Model 30-Day Low Streamflow Forecast for GRANBY RIVER NEAR GRAND FORKS (08NN002) - Issued at: 12:49 PM Mon Jul 31, 2023

(b) 2/3 or 20 of observed data points fall in between forecast maximums (+10%) and minimums (-10%) Figure 11. Four categories of ELF Model accurate forecasts (continued on next page).



(c) 1/3 or 10 lowest observed data points out of 30 fall in between forecast maximums (+10%) and minimums (-10%)



ELF Model 30-Day Low Streamflow Forecast for MESILINKA RIVER ABOVE GOPHERHOLE CREEK (07EC003) - Issued at: 04:45 PM Tue Sep 27, 2022

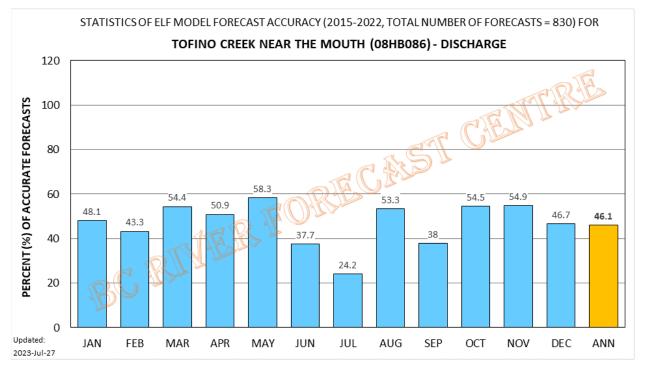
(d) 3 of last 5 observed data points fall in between forecast maximums (+10%) and minimums (-10%) Figure 11. Four categories of ELF Model accurate forecasts (continued).

The ELF Model was put into operation as of July 2018, updating once or twice a week. Together with the reconstructed "forecasts" from January 2015 to June 2018, there is a total of 8 years of forecasts by the end of 2022 (about 800) for each of the 439 stations excluding the inactive stations. Most of these stations are WSC real-time hydrometric stations, and three of which are BC real-time water data stations.

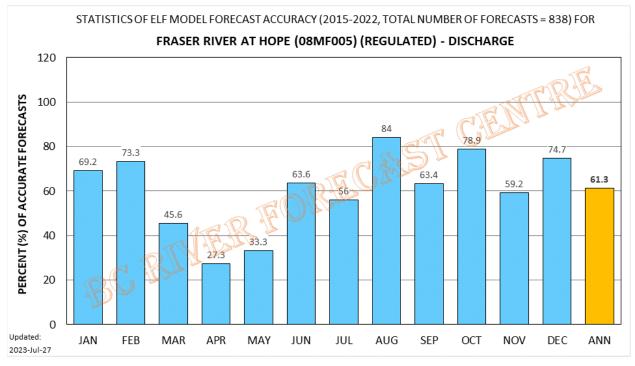
The statistical analysis for the ELF Model all historical forecasts for all the flow stations was carried out with a program of Excel macro coded with the method described in this section. The statistical analysis opened and read about 350,000 files for the 8-year period (2015 to 2020), which made the Kamloops GIS server out of memory and consumed a total of about 40 hours of computing time of this server after the program has been optimized later.

Table 2 lists the statistics of the ELF Model historical forecast accuracy (percent of accurate forecasts) for discharge in each of the 12 months and the entire year for the 20 stations listed in Table 1 in Section 2. Figure 12 shows the statistical bar charts for two stations of the ELF Model historical forecast accuracy for discharge for two BC watersheds, the TOFINO CREEK NEAR MTHE MOUTH (08HB086) and the FRASER RIVER AT HOPE (08MF005).

From the limited number of watersheds listed in Table 2 and the two examples shown in Figure 12, it can be seen that the ELF Model historical forecast accuracy for the interior watersheds is higher than that for the coastal watersheds. This is generally true for most BC watersheds because there are more data noises in the coastal watersheds, which are incurred by rainfall events, than in the interior watersheds.


Tables 3 to 6 list the top ranked 50 stations that the ELF Model has the largest annual percent of accurate forecasts for discharges and for water levels, and that the ELF Model has largest percent of accurate forecasts in July and August for discharges and for water levels. Three phenomena can be seen form these tables. First, the ELF Model has better forecasts for water levels than for discharges. The reason for this may be that the data quality of discharges is lower than that of water levels in the low flow period because the discharge data is derived from the water level data using rating curves, which may introduce additional errors to the discharge data. In the low flow period, the flow cross section shrinks acceleratingly, which could result in an inaccurate rating curve. Second, many lake stations are included in the top ranked 50 stations. This may be because the lake effects can smooth the data and errors, daily lake water level changes are insignificant, and lake water level measurements are easier and thus the readings are more reliable. And third, more interior stations than coastal stations are include in the top ranked 50 stations for the reason given above.

39


Table 2. Statistics of ELF Model historical forecast accuracy for discharge for 10 coastal watersheds and10 interior watersheds.

| STATION |                                                           | PERCENT (%) OF ELF MODEL ACCURATE FORECASTS FOR DISCHARGES |      |      |      |      |      |      |      |      |      |      |      |      | TTL NO |
|---------|-----------------------------------------------------------|------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------|
| ID      | STATION NAME                                              | JAN                                                        | FEB  | MAR  | APR  | ΜΑΥ  | JUN  | JUL  | AUG  | SEP  | ост  | NOV  | DEC  | ANN  | OF FOR |
| 08HB086 | TOFINO CREEK NEAR<br>THE MOUTH                            | 48.1                                                       | 43.3 | 54.4 | 50.9 | 58.3 | 37.7 | 24.2 | 53.3 | 38.0 | 54.5 | 54.9 | 46.7 | 46.1 | 830    |
| 08GB013 | CLOWHOM RIVER NEAR<br>CLOWHOM LAKE                        | 48.1                                                       | 60.0 | 49.1 | 29.1 | 40.3 | 64.9 | 57.1 | 49.3 | 53.7 | 46.5 | 57.7 | 76.0 | 53.5 | 838    |
| 08MH147 | STAVE RIVER ABOVE<br>STAVE LAKE                           | 55.8                                                       | 55.0 | 54.4 | 25.5 | 38.9 | 57.1 | 59.3 | 53.3 | 57.3 | 59.2 | 63.4 | 76.0 | 55.4 | 838    |
| 08GF007 | WAKEMAN RIVER<br>BELOW ATWAYKELLESSE<br>RIVER             | 53.8                                                       | 63.3 | 49.1 | 36.4 | 38.9 | 68.8 | 69.2 | 62.7 | 58.5 | 35.2 | 56.3 | 69.3 | 56.1 | 838    |
| 08GA071 | ELAHO RIVER NEAR THE<br>MOUTH                             | 65.4                                                       | 56.7 | 28.1 | 14.5 | 30.6 | 54.5 | 61.5 | 41.3 | 57.3 | 64.8 | 76.1 | 78.7 | 53.6 | 838    |
| 08GE002 | KLINAKLINI RIVER EAST<br>CHANNEL (MAIN) NEAR<br>THE MOUTH | 63.5                                                       | 73.3 | 49.1 | 10.9 | 27.8 | 33.8 | 71.4 | 61.3 | 52.4 | 73.2 | 69.0 | 61.3 | 54.7 | 838    |
| 08CG001 | ISKUT RIVER BELOW<br>JOHNSON RIVER                        | 51.9                                                       | 50.9 | 70.6 | 14.8 | 15.3 | 61.0 | 58.2 | 60.0 | 65.9 | 64.8 | 57.7 | 54.7 | 52.9 | 824    |
| 08DB001 | NASS RIVER ABOVE<br>SHUMAL CREEK                          | 75.0                                                       | 63.3 | 52.6 | 10.9 | 30.6 | 61.0 | 57.1 | 64.0 | 65.9 | 53.5 | 57.7 | 78.7 | 56.6 | 838    |
| 08CE001 | STIKINE RIVER AT<br>TELEGRAPH CREEK                       | 59.6                                                       | 66.7 | 86.0 | 12.2 | 15.3 | 54.5 | 65.9 | 37.3 | 52.4 | 50.7 | 63.4 | 36.0 | 50.2 | 832    |
| 08EF001 | SKEENA RIVER AT USK                                       | 61.5                                                       | 66.7 | 52.6 | 9.1  | 29.2 | 55.8 | 75.8 | 62.7 | 59.8 | 64.8 | 69.0 | 56.0 | 56.4 | 838    |
| 08NJ026 | DUHAMEL CREEK ABOVE<br>DIVERSIONS                         | 71.2                                                       | 61.7 | 22.8 | 9.1  | 25.0 | 36.4 | 70.3 | 82.7 | 63.4 | 53.5 | 52.1 | 74.7 | 53.3 | 838    |
| 08NG077 | ST. MARY RIVER BELOW<br>MORRIS CREEK                      | 82.1                                                       | 54.5 | 54.5 | 16.7 | 46.7 | 35.9 | 76.1 | 86.0 | 34.5 | 69.6 | 59.6 | 51.0 | 56.0 | 493    |
| 08NF001 | KOOTENAY RIVER AT<br>KOOTENAY CROSSING                    | 73.1                                                       | 60.0 | 60.0 | 14.5 | 33.3 | 51.9 | 68.1 | 76.0 | 62.2 | 78.9 | 67.6 | 58.7 | 59.4 | 836    |
| 08NG002 | BULL RIVER NEAR<br>WARDNER                                | 67.3                                                       | 70.0 | 24.6 | 12.7 | 51.4 | 46.8 | 76.9 | 93.3 | 70.7 | 67.6 | 67.6 | 82.7 | 62.9 | 838    |
| 08NN026 | KETTLE RIVER NEAR<br>WESTBRIDGE                           | 75.0                                                       | 60.0 | 20.0 | 9.4  | 33.3 | 51.9 | 65.9 | 80.0 | 46.3 | 46.5 | 53.5 | 66.7 | 52.0 | 834    |
| 08NL038 | SIMILKAMEEN RIVER<br>NEAR HEDLEY                          | 42.3                                                       | 53.3 | 38.6 | 14.5 | 43.1 | 50.6 | 80.2 | 86.7 | 50.0 | 38.0 | 42.3 | 54.7 | 51.4 | 838    |
| 08NG065 | KOOTENAY RIVER AT<br>FORT STEELE                          | 71.2                                                       | 63.3 | 59.6 | 12.7 | 29.2 | 53.2 | 75.8 | 89.3 | 69.5 | 74.6 | 67.6 | 64.0 | 62.1 | 838    |
| 08LF051 | THOMPSON RIVER NEAR<br>SPENCES BRIDGE                     | 78.8                                                       | 82.1 | 64.9 | 18.2 | 37.5 | 59.7 | 52.7 | 88.0 | 61.0 | 76.1 | 70.4 | 88.0 | 64.9 | 834    |
| 08MC018 | FRASER RIVER NEAR<br>MARGUERITE                           | 71.2                                                       | 51.7 | 59.3 | 28.3 | 47.2 | 59.7 | 68.1 | 80.0 | 62.2 | 59.2 | 62.0 | 78.7 | 61.6 | 833    |
| 08MF005 | FRASER RIVER AT HOPE                                      | 69.2                                                       | 73.3 | 45.6 | 27.3 | 33.3 | 63.6 | 56.0 | 84.0 | 63.4 | 78.9 | 59.2 | 74.7 | 61.3 | 838    |

Note: ANN – annual, TTL NO OF FOR – total number of forecasts.



(a) TOFINO CREEK NEAR THE MOUTH (08HB086)



<sup>(</sup>b) FRASER RIVER AT HOPE (08MF005)

Figure 12. Statistical bar charts of ELF Model historical forecast accuracy for discharge for two BC watersheds.

Table 3. Top ranked 50 stations ELF Model has largest annual percent of accurate forecasts for discharges (Note: RK – rank, ANN – annual, JL+AG – July and August).

|    | STATION |                                |          | PERCE | NT (%    | 6) OF | ELF M    | ODEL     | ACCU     | IRATE    | FORE | CAST     | S FOR    | DISCH | IARGE | S     |
|----|---------|--------------------------------|----------|-------|----------|-------|----------|----------|----------|----------|------|----------|----------|-------|-------|-------|
| RK | ID      | STATION NAME                   | JAN      | FEB   | MAR      | APR   | MAY      | JUN      | JUL      | AUG      | SEP  | ОСТ      | NOV      | DEC   | ANN   | JL+AG |
| 1  | 08JE001 | STUART RIVER NEAR FORT ST. JAM | 92       | 98    | 91       | 13    | 3        | 62       | 81       | 99       | 100  | 94       | 93       | 97    | 77.8  | 90.0  |
| 2  | 08EC013 | BABINE RIVER AT OUTLET OF NILK | 92       | 93    | 83       | 16    | 39       | 68       | 88       | 88       | 93   | 78       | 85       | 91    | 77.0  | 88.0  |
| 3  | 08HD021 | QUINSAM RIVER AT ARGONAUT B    |          | 83    | 95       | 55    | 71       | 82       | 88       | 93       | 83   | 41       | 61       | 51    | 73.2  | 90.6  |
| 4  | 08JB002 | STELLAKO RIVER AT GLENANNAN    |          | 88    | 84       | 16    | 46       | 68       | 64       | 89       | 89   | 69       | 73       | 91    | 72.7  | 76.5  |
| 5  | 08ME029 | BRIDGE RIVER BELOW LAJOIE DAN  | 79       | 86    | 91       | 70    | 48       | 64       | 80       | 70       | 31   | 60       | 89       | 100   | 70.8  | 74.9  |
| 6  | 08NK022 | LINE CREEK AT THE MOUTH        | 79       | 69    | 73       | 32    | 35       | 53       | 82       | 88       | 95   | 83       | 66       | 75    | 70.6  | 85.0  |
| 7  | 10BE009 | TEETER CREEK NEAR THE MOUTH    | 84       | 72    | 71       | 42    | 61       | 69       | 75       | 72       | 63   | 65       | 66       | 79    | 68.3  | 73.4  |
| 8  | 08NM002 | OKANAGAN RIVER AT OKANAGAN     | 75       | 40    | 58       | 69    | 50       | 69       | 62       | 65       | 76   | 82       | 85       | 79    | 67.7  | 63.4  |
| 9  | 08LE108 | EAST CANOE CREEK ABOVE DAM     | 64       | 69    | 27       | 13    | 67       | 85       | 77       | 96       | 60   | 76       | 68       | 69    | 67.5  | 86.7  |
| 10 | 09AA001 | ATLIN LAKE AT ATLIN            | 91       | 93    | 100      | 100   | 18       | 0        | 34       | 77       | 60   | 79       | 98       | 88    | 67.5  | 55.6  |
| 11 | 08LF033 | THOMPSON RIVER NEAR SAVONA     | 0        | 100   | 56       | 50    | 21       | 64       | 54       | 100      | 67   | 86       | 90       | 88    | 67.3  | 76.9  |
| 12 | 08NM085 | OKANAGAN RIVER NEAR OLIVER     | 71       | 48    | 61       | 56    | 51       | 68       | 68       | 64       | 71   | 78       | 85       | 77    | 67.1  | 66.1  |
| 13 | 09AA013 | TUTSHI RIVER AT OUTLET OF TUTS | 75       | 92    | 81       | 64    | 15       | 52       | 68       | 75       | 66   | 63       | 83       | 79    | 67.0  | 71.4  |
| 14 | 08NM247 | OKANAGAN RIVER BELOW MCINT     | 69       | 45    | 63       | 64    | 63       | 61       | 63       | 67       | 66   | 75       | 85       | 81    | 66.9  | 64.7  |
| 15 | 08LD001 | ADAMS RIVER NEAR SQUILAX       | 96       | 90    | 70       | 18    | 21       | 62       | 56       | 93       | 73   | 78       | 63       | 83    | 66.8  | 74.7  |
| 16 | 08LB024 | FISHTRAP CREEK NEAR MCLURE     | 61       | 67    | 42       | 31    | 79       | 74       | 76       | 84       | 64   | 72       | 55       | 67    | 66.7  | 80.1  |
| 17 | 08JB003 | NAUTLEY RIVER NEAR FORT FRASE  | 65       | 83    | 51       | 9     | 50       | 68       | 70       | 91       | 95   | 63       | 63       | 67    | 66.3  | 80.5  |
| 18 | 08MH024 | FRASER RIVER AT MISSION        | 75       | 73    | 79       | 35    | 38       | 57       | 58       | 91       | 78   | 75       | 69       | 63    | 65.9  | 74.5  |
| 19 | 08LE031 | SOUTH THOMPSON RIVER AT CHA    | 83       | 78    | 68       | 29    | 17       | 57       | 59       | 93       | 84   | 79       | 59       | 79    | 65.8  | 76.3  |
|    |         | TELKWA RIVER BELOW TSAI CREE   | 89       | 83    | 75       | 11    | 24       | 68       | 70       | 65       | 77   | 65       | 73       | 84    | 65.8  | 67.8  |
|    |         | CAYOOSH CREEK NEAR LILLOOET    | 75       | 68    | 75       | 47    | 29       | 51       | 58       | 73       | 81   | 78       | 72       | 79    | 65.4  | 65.8  |
| -  |         | ALOUETTE RIVER NEAR HANEY      | 48       | 65    | 65       | 47    | 60       | 68       | 97       | 92       | 67   | 55       | 47       | 55    | 65.3  | 94.4  |
|    |         | DUCK CREEK NEAR WYNNDEL        | 87       | 67    | 55       | 25    | 30       | 42       | 79       | 81       | 82   | 54       | 80       | 90    | 65.3  | 80.0  |
|    |         | FORDING RIVER AT THE MOUTH     | 79       | 78    | 70       | 15    | 26       | 49       | 75       | 76       | 87   | 87       | 65       | 65    | 65.2  | 75.4  |
|    |         | THOMPSON RIVER NEAR SPENCES    | 79       | 82    | 65       | 18    | 38       | 60       | 53       | 88       | 61   | 76       | 70       | 88    | 64.9  | 70.4  |
|    |         | ARROW CREEK NEAR ERICKSON      | 67       | 68    | 42       | 22    | 29       | 57       | 88       | 89       | 76   | 68       | 66       | 83    | 64.8  | 88.6  |
|    |         | SMITH RIVER NEAR THE MOUTH     | 80       | 53    | 52       | 62    | 80       | 68       | 85       | 68       | 85   | 63       | 27       | 43    | 64.8  | 76.3  |
|    |         | QUESNEL RIVER NEAR QUESNEL     | 79       | 67    | 60       | 24    | 39       | 71       | 55       | 92       | 62   | 73       | 69       | 80    | 64.7  | 73.5  |
| -  |         | NECHAKO RIVER BELOW CHESLAT    | 85       | 87    | 68       | 36    | 54       | 68       | 43       | 35       | 79   | 65       | 73       | 89    | 64.6  | 38.8  |
|    |         | NATION RIVER NEAR FORT ST. JAN | 0        | 38    | 100      | 63    | 7        | 9        | 77       | 100      | 100  | 100      | 90       | 63    | 64.5  | 88.5  |
|    |         | YALAKOM RIVER ABOVE ORE CREE   |          | 71    | 93       | 23    | 27       | 48       | 70       | 83       | 81   | 83       | 64       | 65    | 64.4  | 76.1  |
|    |         | FRASER RIVER AT RED PASS       | 94       | 88    | 83       | 29    | 14       | 48       | 63       | 79       | 56   | 75       | 68       | 84    | 64.2  | 70.7  |
|    |         | SETON RIVER NEAR LILLOOET      | 94       | 78    | 84       | 46    | 56       | 47       | 52       | 60       | 31   | 85       | 90       | 69    | 64.2  | 55.8  |
| -  |         | QUESNEL RIVER AT LIKELY        | 89       | 90    | 65       | 27    | 21       | 62       | 50       | 92       | 66   | 69       | 58       | 85    | 64.1  | 70.8  |
| _  | 08LF099 | ARROWSTONE CREEK NEAR THE N    | 71       | 93    | 50       | 23    | 63       | 43       | 67       | 57       | 86   | 59       | 76       | 75    | 64.1  | 61.8  |
|    |         | ELK RIVER NEAR NATAL           | 73       | 67    | 67       | 12    | 18       | 43       | 73       | 83       | 94   | 93       | 63       | 65    | 64.0  | 78.0  |
|    |         | SHATFORD CREEK NEAR PENTICTO   |          | 82    | 43       | 15    |          | _        | 84       | 91       | 57   | 49       |          |       | 63.9  |       |
|    |         | OKANAGAN RIVER AT PENTICTON    | 64       | 42    | 67       | 75    | 42       | 64       | 67       | 69       | 65   | 55       | 82       |       | 63.7  | 68.2  |
|    |         | SPLIT CREEK AT THE MOUTH       | 93       | 89    | 91       | 45    | 19       | 49       | 44       | 78       | 66   | 78       | 57       |       | 63.7  | 61.2  |
|    |         | EWART CREEK NEAR CATHEDRAL P   |          | 83    | 69       | 43    | 27       | 49       | 72       | 88       | 59   | 60       | 74       |       | 63.6  |       |
|    |         | SHUSWAP RIVER NEAR ENDERBY     | 94       | 80    | 51       | 29    | 22       | 44       | 64       | 89       | 70   | 70       | 65       |       | 63.4  | 76.5  |
|    |         | CHEHALIS RIVER NEAR HARRISON   | 80       | 50    | 67       | 63    | 22       | 36       | 85       | 100      | 80   | 43       | 40       |       | 63.3  | 92.3  |
|    |         | PEACE RIVER ABOVE ALCES RIVER  | 60       | 67    | 72       | 55    | 50       | 52       | 65       | 65       | 61   | 62       | 72       |       | 63.2  | 65.1  |
|    |         | SHUSWAP RIVER NEAR LUMBY       | 94       | 75    | 72<br>54 | 20    | 25       | 46       | 62       | 73       | 66   | 78       | 72       |       | 63.1  | 67.4  |
|    |         | FRASER RIVER ABOVE TEXAS CREE  | 73       | 67    | 54       | 20    | 40       | 40<br>69 | 65       | 84       | 65   | 82       | 62       |       | 63.0  |       |
|    |         | BULL RIVER NEAR WARDNER        | 67       | 70    | 25       | 13    | 40<br>51 | 69<br>47 | 05<br>77 | 84<br>93 | 71   | 82<br>68 |          |       | 62.9  |       |
|    |         |                                |          |       |          |       |          |          |          |          |      |          | 68<br>40 |       |       |       |
|    |         | QUINSAM RIVER NEAR CAMPBELL    | 52<br>01 | 58    | 72       | 75    | 76       | 70       | 84<br>85 | 85<br>04 | 45   | 39       | 49       |       | 62.9  |       |
| _  |         | LEMON CREEK ABOVE SOUTH LEM    |          | 65    | 68       | 9     | 25       | 43       | 85       | 84       | 59   | 70       | 73       |       | 62.9  |       |
|    |         | KASLO RIVER BELOW KEMP CREEK   |          | 65    | 51       | 11    | 26       | 47       | 70       | 85       | 60   | 80       | 75       |       | 62.8  |       |
| 50 | U81C018 | SHUSWAP RIVER AT OUTLET OF SI  | 96       | 63    | 63       | 29    | 21       | 46       | 53       | 75       | 65   | 78       | 79       | 91    | 62.8  | 63.7  |

Table 4. Top ranked 50 stations ELF Model having largest annual percent of accurate forecasts for water levels (Note: RK – rank, ANN – annual, JL+AG – July and August).

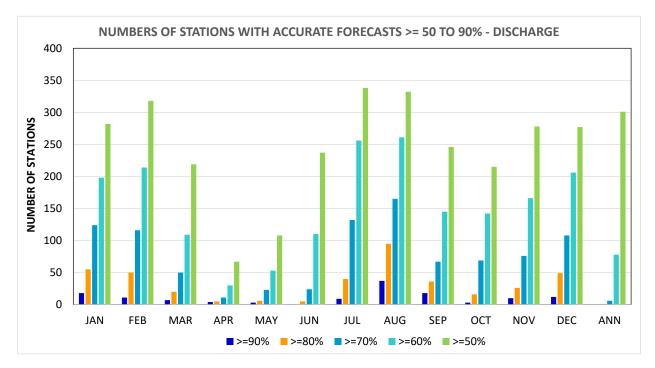
|    | STATION |                                 | Р   | ERCEN | NT (%)     | OF E | F MC | DEL A | ACCUF | ATE F | OREC | ASTS | FOR V | VATE |      | LS    |
|----|---------|---------------------------------|-----|-------|------------|------|------|-------|-------|-------|------|------|-------|------|------|-------|
| RK | ID      | STATION NAME                    | JAN |       | - <u> </u> | APR  |      |       |       | AUG   |      |      |       |      |      | JL+AG |
|    | 08NM084 | SKAHA LAKE AT OKANAGAN FALLS    | 100 | 98    | 98         | 87   | 94   | 83    | 98    | 99    | 94   | 100  | 100   | 100  | 95.9 | 98.3  |
|    | 08NM143 | KALAMALKA LAKE AT VERNON PUM    | 100 | 100   | 98         | 78   | 68   | 92    | 93    | 100   | 96   | 97   | 100   | 100  | 93.7 | 96.7  |
| 3  | 08EC003 | BABINE LAKE AT TOPLEY LANDING   |     | 82    | 91         | 38   | 40   | 70    | 90    | 99    | 93   | 100  | 99    | 100  | 84.1 | 94.4  |
| 4  | 08NM083 | OKANAGAN LAKE AT KELOWNA        | 100 | 83    | 86         | 40   | 38   | 77    | 80    | 97    | 100  | 97   | 99    | 100  | 83.7 | 88.8  |
| 5  | 08NL076 | EWART CREEK NEAR CATHEDRAL P    | 98  | 87    | 92         | 33   | 50   | 66    | 81    | 99    | 84   | 88   | 95    | 97   | 81.2 | 89.9  |
| 6  | 08LF099 | ARROWSTONE CREEK NEAR THE M     | 82  | 89    | 61         | 48   | 71   | 70    | 86    | 67    | 98   | 96   | 92    | 90   | 80.7 | 76.6  |
| 7  | 08HD021 | QUINSAM RIVER AT ARGONAUT BE    | 85  | 83    | 97         | 56   | 78   | 91    | 95    | 97    | 90   | 51   | 69    | 60   | 79.8 | 95.9  |
| 8  | 08JB007 | NADINA LAKE NEAR NORALEE        | 100 | 90    | 84         | 40   | 53   | 79    | 84    | 89    | 78   | 68   | 78    | 84   | 77.3 | 86.4  |
| 9  | 08LG046 | NICOLA LAKE NEAR NICOLA         | 100 | 60    | 75         | 44   | 26   | 84    | 62    | 87    | 100  | 92   | 93    | 99   | 77.2 | 74.1  |
| 10 | 08EC001 | BABINE RIVER AT BABINE          | 90  | 100   | 93         | 24   | 38   | 66    | 87    | 88    | 89   | 75   | 80    | 87   | 76.8 | 87.4  |
| 11 | 10BE009 | TEETER CREEK NEAR THE MOUTH     | 88  | 78    | 86         | 56   | 71   | 79    | 78    | 77    | 83   | 80   | 68    | 76   | 76.8 | 77.7  |
| 12 | 08NB016 | SPLIT CREEK AT THE MOUTH        | 86  | 89    | 100        | 55   | 35   | 83    | 55    | 84    | 90   | 80   | 89    | 82   | 76.5 | 69.4  |
| 13 | 08GE003 | ICY CREEK NEAR THE MOUTH        | 83  | 80    | 74         | 49   | 71   | 69    | 97    | 73    | 79   | 76   | 69    | 77   | 75.5 | 85.0  |
| 14 | 08JB003 | NAUTLEY RIVER NEAR FORT FRASE   | 75  | 90    | 58         | 24   | 67   | 74    | 80    | 97    | 96   | 70   | 70    | 75   | 74.6 | 88.8  |
| 15 | 08NM002 | OKANAGAN RIVER AT OKANAGAN F    | 77  | 55    | 65         | 73   | 61   | 78    | 77    | 72    | 76   | 86   | 85    | 81   | 74.2 | 74.5  |
| 16 | 08NK022 | LINE CREEK AT THE MOUTH         | 71  | 61    | 82         | 32   | 35   | 59    | 92    | 86    | 100  | 91   | 77    | 67   | 73.4 | 89.4  |
| 17 | 08JB002 | STELLAKO RIVER AT GLENANNAN     | 83  | 87    | 63         | 18   | 54   | 75    | 76    | 89    | 85   | 61   | 70    | 83   | 71.5 | 82.6  |
| 18 | 08MH005 | ALOUETTE RIVER NEAR HANEY       | 54  | 67    | 75         | 58   | 67   | 70    | 95    | 97    | 78   | 66   | 49    | 63   | 71.2 | 95.9  |
| 19 | 08NL050 | HEDLEY CREEK NEAR THE MOUTH     | 89  | 85    | 69         | 35   | 74   | 71    | 79    | 85    | 63   | 56   | 75    | 68   | 71.0 | 82.2  |
| 20 | 08LG008 | SPIUS CREEK NEAR CANFORD        | 80  | 69    | 82         | 51   | 44   | 65    | 79    | 93    | 75   | 65   | 63    | 78   | 70.6 | 85.8  |
| 21 | 08KG001 | WEST ROAD RIVER NEAR CINEMA     | 81  | 89    | 62         | 34   | 61   | 71    | 66    | 90    | 69   | 79   | 63    | 78   | 70.3 | 78.1  |
| 22 | 08ME029 | BRIDGE RIVER BELOW LAJOIE DAM   | 65  | 74    | 72         | 68   | 39   | 75    | 90    | 84    | 31   | 55   | 87    | 98   | 70.1 | 87.3  |
| 23 | 08NM065 | VERNON CREEK AT OUTLET OF KAL   | 77  | 83    | 77         | 62   | 39   | 79    | 63    | 67    | 66   | 73   | 78    | 83   | 70.0 | 64.7  |
| 24 | 08NG002 | BULL RIVER NEAR WARDNER         | 67  | 73    | 44         | 22   | 53   | 53    | 80    | 96    | 84   | 76   | 79    | 85   | 69.6 | 88.1  |
| 25 | 08NK030 | ELK RIVER BELOW ELKO DAM        | 75  | 57    | 61         | 35   | 44   | 52    | 80    | 93    | 89   | 85   | 75    | 73   | 69.6 | 86.8  |
| 26 | 08NM050 | OKANAGAN RIVER AT PENTICTON     | 73  | 50    | 72         | 75   | 50   | 73    | 68    | 75    | 68   | 69   | 80    | 77   | 69.2 | 71.4  |
| 27 | 08LF002 | BONAPARTE RIVER BELOW CACHE     | 77  | 65    | 53         | 46   | 71   | 46    | 70    | 89    | 84   | 89   | 69    | 63   | 69.1 | 79.8  |
| 28 | 07FA003 | HALFWAY RIVER ABOVE GRAHAM I    | 83  | 74    | 77         | 67   | 39   | 73    | 76    | 80    | 87   | 83   | 30    | 63   | 69.1 | 77.9  |
| 29 | 08NM243 | VASEUX LAKE NEAR THE OUTLET     | 81  | 77    | 81         | 55   | 60   | 64    | 74    | 48    | 63   | 63   | 83    | 85   | 69.1 | 60.8  |
| 30 | 08LE108 | EAST CANOE CREEK ABOVE DAM      | 68  | 75    | 39         | 13   | 67   | 79    | 77    | 90    | 69   | 65   | 57    | 88   | 68.6 | 83.8  |
| 31 | 08JA023 | NECHAKO RESERVOIR AT SKINS LAI  | 100 | 88    | 79         | 53   | 1    | 35    | 42    | 96    | 89   | 78   | 89    | 85   | 68.3 | 68.9  |
| 32 | 08HB084 | PUNTLEDGE RIVER BELOW DIVERS    | 38  | 69    | 69         | 61   | 83   | 86    | 75    | 70    | 41   | 70   | 64    | 78   | 67.9 | 72.3  |
| 33 | 08LF027 | DEADMAN RIVER ABOVE CRISS CR    | 70  | 69    | 67         | 29   | 56   | 72    | 53    | 86    | 93   | 72   | 74    | 64   | 67.8 | 69.2  |
| 34 | 08NM171 | VASEUX CREEK ABOVE SOLCO CREE   | 87  | 67    | 51         | 35   | 51   | 62    | 77    | 75    | 73   | 65   | 78    | 83   | 67.7 | 75.8  |
| 35 | 07FB009 | FLATBED CREEK AT KILOMETRE 110  | 75  | 63    | 74         | 38   | 63   | 58    | 78    | 80    | 73   | 69   | 72    | 60   | 67.5 | 79.0  |
| 36 | 08NM200 | INKANEEP CREEK NEAR THE MOUTH   | 73  | 73    | 44         | 46   | 74   | 57    | 74    | 84    | 51   | 61   | 83    | 84   | 67.5 | 78.8  |
| 37 | 08MH168 | OR CREEK NEAR COQUITLAM         | 50  | 68    | 65         | 75   | 62   | 73    | 85    | 85    | 52   | 65   | 62    | 60   | 67.4 | 85.0  |
| 38 | 08NM085 | OKANAGAN RIVER NEAR OLIVER      | 73  | 58    | 63         | 60   | 50   | 69    | 68    | 63    | 66   | 78   | 83    | 76   | 67.4 | 65.4  |
| 39 | 08HD022 | CAMPBELL RIVER AT CAMPBELL RIV  | 0   | 88    | 89         | 63   | 93   | 64    | 85    | 70    | 56   | 14   | 60    | 25   | 67.3 | 77.3  |
| 40 | 08HA016 | BINGS CREEK NEAR THE MOUTH      | 52  | 63    | 74         | 86   | 96   | 77    | 91    | 81    | 52   | 39   | 52    | 39   | 67.2 | 86.3  |
| 41 | 08HF004 | TSITIKA RIVER BELOW CATHERINE   | 63  | 67    | 60         | 58   | 73   | 71    | 79    | 89    | 57   | 53   | 64    | 64   | 67.1 | 83.7  |
| 42 | 08NM174 | WHITEMAN CREEK ABOVE BOULEA     | 73  | 70    | 53         | 38   | 58   | 62    | 60    | 87    | 74   | 73   | 72    | 76   | 67.1 | 73.6  |
| 43 | 08KA007 | FRASER RIVER AT RED PASS        | 96  | 90    | 88         | 35   | 19   | 51    | 67    | 79    | 59   | 69   | 75    | 88   | 67.1 | 72.9  |
| 44 | 08EC013 | BABINE RIVER AT OUTLET OF NILKI | 67  | 83    | 60         | 11   | 40   | 71    | 79    | 83    | 88   | 59   | 62    | 80   | 66.9 | 80.9  |
| 45 | 08JE001 | STUART RIVER NEAR FORT ST. JAM  | 87  | 88    | 79         | 11   | 1    | 46    | 55    | 96    | 93   | 80   | 80    | 84   | 66.8 | 75.5  |
| 46 | 08ME003 | SETON RIVER NEAR LILLOOET       | 96  | 78    | 86         | 51   | 60   | 57    | 54    | 64    | 31   | 83   | 90    | 72   | 66.8 | 58.9  |
| 47 | 08NM037 | SHATFORD CREEK NEAR PENTICTO    | 90  | 80    | 49         | 25   | 46   | 52    | 80    | 89    | 56   | 62   | 81    | 83   | 66.7 | 84.8  |
| 48 | 08NK016 | ELK RIVER NEAR NATAL            | 65  | 69    | 56         | 12   | 38   | 59    | 79    | 87    | 96   | 93   | 54    | 65   | 66.6 | 82.9  |
| 49 | 08HD027 | QUINSAM RIVER BELOW LOWER Q     | 46  | 67    | 72         | 76   | 89   | 70    | 80    | 72    | 52   | 58   | 59    | 51   | 66.3 | 76.1  |
| 50 | 08ME002 | CAYOOSH CREEK NEAR LILLOOET     | 81  | 72    | 74         | 47   | 31   | 60    | 59    | 71    | 72   | 78   | 76    | 79   | 66.2 | 65.0  |

Table 5. Top ranked 50 stations ELF Model has largest Jul + Aug percent of accurate forecasts for discharges (Note: RK – rank, ANN – annual, JL+AG – July and August).

|    | STATION  |                                |     | PERCE | ENT (% | 6) OF    | ELF M | ODEL     | ACCL | JRATE | FORE | CAST | S FOR    | DISCH | IARG | S     |
|----|----------|--------------------------------|-----|-------|--------|----------|-------|----------|------|-------|------|------|----------|-------|------|-------|
| RK | ID       | STATION NAME                   | JAN |       | · ·    | <b>.</b> | MAY   |          |      | AUG   |      |      | NOV      |       |      | JL+AG |
| 1  | 08MH005  | ALOUETTE RIVER NEAR HANEY      | 48  | 65    | 65     | 47       | 60    | 68       | 97   | 92    | 67   | 55   | 47       | 55    | 65.3 | 94.4  |
| 2  | 08NE039  | BIG SHEEP CREEK NEAR ROSSLANI  | 65  | 38    | 20     | 9        | 33    | 62       | 86   | 100   | 71   | 58   | 68       | 70    | 59.9 | 93.1  |
| 3  | 08MG001  | CHEHALIS RIVER NEAR HARRISON   | 80  | 50    | 67     | 63       | 29    | 36       | 85   | 100   | 80   | 43   | 40       | 72    | 63.3 | 92.3  |
| 4  | 08NE130  | WHATSHAN RIVER BELOW BARNE     | 0   | 75    | 44     | 13       | 0     | 0        | 85   | 100   | 22   | 86   | 60       | 75    | 48.6 | 92.3  |
| 5  | 08HD021  | QUINSAM RIVER AT ARGONAUT B    | 71  | 83    | 95     | 55       | 71    | 82       | 88   | 93    | 83   | 41   | 61       | 51    | 73.2 | 90.6  |
| 6  | 08JE001  | STUART RIVER NEAR FORT ST. JAN | 92  | 98    | 91     | 13       | 3     | 62       | 81   | 99    | 100  | 94   | 93       | 97    | 77.8 | 90.0  |
| 7  | 08NH084  | ARROW CREEK NEAR ERICKSON      | 67  | 68    | 42     | 22       | 29    | 57       | 88   | 89    | 76   | 68   | 66       | 83    | 64.8 | 88.6  |
| 8  | 07ED001  | NATION RIVER NEAR FORT ST. JAN | 0   | 38    | 100    | 63       | 7     | 9        | 77   | 100   | 100  | 100  | 90       | 63    | 64.5 | 88.5  |
| 9  | 08HA002  | COWICHAN RIVER AT LAKE COWI    | 40  | 57    | 63     | 49       | 51    | 46       | 79   | 97    | 57   | 23   | 56       | 39    | 55.7 | 88.2  |
| 10 | 08EC013  | BABINE RIVER AT OUTLET OF NILK | 92  | 93    | 83     | 16       | 39    | 68       | 88   | 88    | 93   | 78   | 85       | 91    | 77.0 | 88.0  |
| 11 | 08NM037  | SHATFORD CREEK NEAR PENTICTO   | 92  | 82    | 43     | 15       | 29    | 49       | 84   | 91    | 57   | 49   | 79       | 87    | 63.9 | 87.1  |
| 12 | 08NL070  | SIMILKAMEEN RIVER ABOVE GOO    | 75  | 75    | 60     | 9        | 23    | 49       | 85   | 89    | 51   | 44   | 63       | 73    | 59.2 | 86.9  |
| 13 | 08LE108  | EAST CANOE CREEK ABOVE DAM     | 64  | 69    | 27     | 13       | 67    | 85       | 77   | 96    | 60   | 76   | 68       | 69    | 67.5 | 86.7  |
| 14 | 08MF062  | COQUIHALLA RIVER BELOW NEED    | 58  | 73    | 58     | 12       | 32    | 45       | 85   | 87    | 49   | 22   | 63       | 65    | 55.3 | 86.1  |
| 15 | 08NG002  | BULL RIVER NEAR WARDNER        | 67  | 70    | 25     | 13       | 51    | 47       | 77   | 93    | 71   | 68   | 68       | 83    | 62.9 | 85.1  |
| 16 | 08NK022  | LINE CREEK AT THE MOUTH        | 79  | 69    | 73     | 32       | 35    | 53       | 82   | 88    | 95   | 83   | 66       | 75    | 70.6 | 85.0  |
| 17 | 10AB001  | FRANCES RIVER NEAR WATSON LA   | 38  | 100   | 67     | 25       | 0     | 18       | 100  | 70    | 67   | 57   | 10       | 35    | 46.8 | 85.0  |
| 18 | 08NE087  | DEER CREEK AT DEER PARK        | 75  | 57    | 11     | 8        | 41    | 49       | 70   | 100   | 61   | 46   | 56       | 78    | 56.9 | 84.8  |
| 19 | 08GB014  | HORSESHOE RIVER ABOVE LOIS LA  | 40  | 70    | 58     | 58       | 74    | 70       | 81   | 88    | 48   | 32   | 45       | 53    | 60.7 | 84.7  |
| 20 | 08HD005  | QUINSAM RIVER NEAR CAMPBELL    | 52  | 58    | 72     | 75       | 76    | 70       | 84   | 85    | 45   | 39   | 49       | 45    | 62.9 | 84.4  |
| 21 | 08NJ160  | LEMON CREEK ABOVE SOUTH LEM    | 81  | 65    | 68     | 9        | 25    | 43       | 85   | 84    | 59   | 70   | 73       | 81    | 62.9 | 84.3  |
| 22 | 08NE074  | SALMO RIVER NEAR SALMO         | 79  | 60    | 25     | 11       | 36    | 48       | 87   | 81    | 51   | 54   | 62       | 65    | 56.4 | 84.1  |
| 23 | 08NH139  | MOYIE RIVER ABOVE NOKE CREEK   | 89  | 73    | 48     | 12       | 27    | 39       | 91   | 76    | 61   | 36   | 64       | 63    | 58.7 | 83.8  |
| 24 | 08NE114  | HIDDEN CREEK NEAR THE MOUTH    | 68  | 54    | 40     | 7        | 37    | 49       | 79   | 89    | 51   | 51   | 73       | 73    | 58.0 | 83.7  |
| 25 | 08LG016  | PENNASK CREEK NEAR QUILCHEN    | 79  | 67    | 46     | 3        | 20    | 59       | 80   | 88    | 41   | 28   | 55       | 74    | 54.7 | 83.6  |
| 26 | 08NL038  | SIMILKAMEEN RIVER NEAR HEDLE   | 42  | 53    | 39     | 15       | 43    | 51       | 80   | 87    | 50   | 38   | 42       | 55    | 51.4 | 83.5  |
| 27 | 08NM172  | PEARSON CREEK NEAR THE MOUT    | 0   | 88    | 33     | 13       | 7     | 9        | 77   | 90    | 67   | 43   | 50       | 63    | 47.7 | 83.5  |
| 28 | 08NJ013  | SLOCAN RIVER NEAR CRESCENT VA  | 83  | 68    | 46     | 13       | 32    | 53       | 68   | 97    | 62   | 68   | 58       | 80    | 61.6 | 82.7  |
| 29 | 08NK002  | ELK RIVER AT FERNIE            | 42  | 57    | 33     | 18       | 32    | 46       | 81   | 84    | 84   | 82   | 68       | 59    | 59.5 | 82.7  |
| 30 | 08NG065  | KOOTENAY RIVER AT FORT STEELE  | 71  | 63    | 60     | 13       | 29    | 53       | 76   | 89    | 70   | 75   | 68       | 64    | 62.1 | 82.6  |
|    |          | MATHER CREEK BELOW HOULE CR    | 78  | 54    | 39     | 21       | 50    | 45       | 84   | 81    | 66   | 61   | 58       |       | 60.7 | 82.3  |
| _  |          | ASH RIVER BELOW MORAN CREEK    | 42  | 65    | 58     | 58       | 54    | 74       | 87   | 77    | 52   | 31   | 55       | 39    | 58.7 | 82.1  |
| -  |          | BURRELL CREEK ABOVE GLOUCEST   | 70  | 70    | 28     | 8        | 39    | 27       | 73   | 91    | 37   | 31   | 43       | 49    | 48.0 | 82.1  |
| _  |          | ST. MARY RIVER BELOW MORRIS    | 82  | 55    | 55     | 17       | 47    | 36       | 76   | 86    | 35   | 70   | 60       | 51    | 56.0 | 81.1  |
|    | 08JB003  | NAUTLEY RIVER NEAR FORT FRASE  | 65  | 83    | 51     | 9        | 50    | 68       | 70   | 91    | 95   | 63   | 63       | 67    | 66.3 | 80.5  |
|    |          | NANAIMO RIVER NEAR CASSIDY     | 42  | 55    | 56     | 56       | 63    | 65       | 74   | 87    | 35   | 47   | 37       |       | 54.5 | 80.2  |
|    |          | FISHTRAP CREEK NEAR MCLURE     | 61  | 67    | 42     | 31       | 79    |          |      |       | 64   |      |          |       | 66.7 |       |
|    |          | EWART CREEK NEAR CATHEDRAL P   |     | 83    | 69     | 4        | 27    | 49       | 72   | 88    | 59   | 60   |          |       | 63.6 |       |
| _  |          | COQUIHALLA RIVER ABOVE ALEXA   | 52  | 72    | 47     | 36       | 53    | 55       | 80   | 80    | 49   | 37   | 62       |       | 58.6 |       |
|    |          | DUCK CREEK NEAR WYNNDEL        | 87  | 67    | 55     | 25       | 30    | 42       | 79   | 81    | 82   | 54   |          |       | 65.3 |       |
|    |          | BARRIERE RIVER AT THE MOUTH    | 64  | 62    | 28     | 9        | 31    | 39       | 75   | 85    | 48   | 61   | 54       |       | 52.9 |       |
|    |          | SIMILKAMEEN RIVER AT PRINCET   |     | 65    | 56     | 9        | 46    | 38       | 81   | 79    | 55   | 44   | 47       |       | 52.5 |       |
|    |          | ROBERTS CREEK AT ROBERTS CREE  | 44  | 50    | 47     | 59       | 64    | 52       | 79   | 81    | 34   | 39   | 41       |       | 52.5 |       |
|    |          | COLDWATER RIVER NEAR MERRIT    | 39  | 45    | 47     | 22       | 46    | 47       | 77   | 83    | 23   | 39   | 45       |       | 46.9 |       |
| _  |          | NILE CREEK NEAR BOWSER         | 53  | 54    | 73     | 57       | 72    | 65       | 84   | 75    | 41   | 54   | 53       |       | 59.6 |       |
| _  |          | COLDWATER RIVER NEAR BROOK     | 56  | 71    | 48     | 16       | 39    | 39       | 77   | 81    | 29   | 35   | 47       |       | 50.3 |       |
|    |          | ATNARKO RIVER NEAR THE MOUT    | 89  | 78    | 67     | 7        | 24    | 58       | 66   | 92    | 62   | 62   | 66       |       | 61.8 |       |
|    |          | ASHNOLA RIVER NEAR KEREMEOS    |     | 54    | 39     | 4<br>15  | 29    | 54<br>26 | 75   | 83    | 66   | 63   | 55       |       | 55.4 |       |
|    |          | WEST KETTLE RIVER AT WESTBRID  |     | 50    | 13     | 15       | 51    | 36       | 68   | 89    | 46   | 48   | 59<br>71 |       | 49.1 |       |
| 50 | υδινπυυ/ | LARDEAU RIVER AT MARBLEHEAD    | 93  | 67    | 42     | 7        | 25    | 57       | 62   | 95    | 54   | 81   | 71       | 83    | 62.2 | 78.6  |

Table 6. Top 50 stations ELF Model has largest Jul + Aug percent of accurate forecasts for water levels (Note: RK – rank, ANN – annual, JL+AG – July and August).

|    | STATION            |                                                           | D               | EBCEN     | JT (%)   |                 | EMC | DEL A |          |          |          | Λςτς     |          |          |              |       |
|----|--------------------|-----------------------------------------------------------|-----------------|-----------|----------|-----------------|-----|-------|----------|----------|----------|----------|----------|----------|--------------|-------|
| RК | ID                 |                                                           |                 |           | <u> </u> | APR             |     |       | JUL      | AUG      |          |          |          |          |              | JL+AG |
| 1  | 08MH156            | PEPIN CREEK AT INTERNATIONAL B                            | <b>JAN</b><br>0 | 0         |          | <u>АРК</u><br>0 | 79  | 73    | 100      | 100      | 100      | 57       | 50       | 63       | 69.3         | 100.0 |
|    | 08MH029            | SUMAS RIVER NEAR HUNTINGDON                               | 38              | 50        | 56       | 100             | 93  | 46    | 100      | 100      | 100      | 100      | 50       | 41       | 65.3         | 100.0 |
|    | 08NM084            | SKAHA LAKE AT OKANAGAN FALLS                              | 100             | 98        | 98       | 87              | 93  | 83    | 98       | 99       | 94       | 100      | 100      | 100      | 95.9         | 98.3  |
|    | 08NM143            | KALAMALKA LAKE AT VERNON PUM                              | 100             | 100       | 98       | 78              | 68  | 92    | 93       | 100      | 94<br>96 | 97       | 100      | 100      | 93.7         | 96.7  |
| -  | 07ED001            | NATION RIVER NEAR FORT ST. JAM                            | 0               | 25        | 22       | /8              | 08  | 92    | 92       | 100      | 89       | 29       | 20       | 38       | 39.3         | 96.2  |
|    | 071D001<br>08HD021 | QUINSAM RIVER AT ARGONAUT BE                              | 85              | 83        | 97       | 56              | 78  | 91    | 95       | 97       | 90       | 51       | 69       | 60       | 79.8         | 95.9  |
|    | 08MH005            | ALOUETTE RIVER NEAR HANEY                                 | 54              | 67        | 75       | 58              | 67  | 70    | 95       | 97       | 78       | 66       | 49       | 63       | 71.2         | 95.9  |
|    | 08EC003            | BABINE LAKE AT TOPLEY LANDING                             | 100             | 82        | 91       | 38              | 40  | 70    | 90       | 99       | 93       | 100      | <br>99   | 100      | 84.1         | 94.4  |
|    | 08EC003            | HOWELL CREEK ABOVE CABIN CREE                             | 68              | 53        | 49       | 13              | 35  | 60    | 100      | 89       | 95<br>95 | 52       | 57       | 82       | 65.5         | 94.4  |
| -  | 08HA009            | COWICHAN LAKE NEAR LAKE COWI                              | 37              | 52        | 67       | 66              | 88  | 95    | 87       | 95       | 55       | 42       | 55       | 40       | 66.1         | 90.8  |
|    |                    | ELK RIVER AT FERNIE                                       | 44              | 52        | 30       | 36              | 49  | 49    | 85       | 96       | 88       | 83       | 68       | 40<br>51 | 63.2         | 90.3  |
|    | 08NL076            | EWART CREEK NEAR CATHEDRAL PA                             | 98              | 87        | 92       | 33              | 50  | 66    | 81       | 99       | 84       | 88       | 95       | 97       | 81.2         | 89.9  |
|    | 08NE070            | BIG SHEEP CREEK NEAR ROSSLAND                             | 68              | 44        | 29       | 26              | 47  | 69    | 82       | 97       | 54       | 51       | 64       | 59       | 59.7         | 89.6  |
|    | 08NK022            |                                                           | 71              | 61        | 82       | 32              | 35  | 59    | 92       | 86       | 100      | 91       | 77       | 59<br>67 | 73.4         | 89.4  |
|    | 08NL069            | LINE CREEK AT THE MOUTH<br>PASAYTEN RIVER ABOVE CALCITE C | 68              | 75        | 58       | 21              | 58  | 42    | 92<br>81 | 97       | 73       | 91<br>64 | 54       | 22       | 60.5         | 88.9  |
|    | 08NM083            | OKANAGAN LAKE AT KELOWNA                                  | 100             | 83        | 86       | 40              | 38  | 42    | 80       | 97       | 100      | 97       | 99       | 100      | 83.7         | 88.8  |
|    | 08JB003            | NAUTLEY RIVER NEAR FORT FRASE                             | 75              | 83<br>90  | 58       | 40<br>24        |     | 74    | 80       | 97<br>97 | 96       | 97<br>70 | 99<br>70 |          | 83.7<br>74.6 | 88.8  |
| -  |                    |                                                           | /5<br>0         | 90<br>50  | 58<br>0  | 13              |     |       | 80<br>77 | 100      | 33       | 57       | 40       | 75       | 41.1         |       |
|    | 08NE130            | WHATSHAN RIVER BELOW BARNES                               | 67              | 73        | -        | 22              | 14  | 18    |          | 96       |          |          | -        | 50       |              | 88.5  |
|    | 08NG002            | BULL RIVER NEAR WARDNER                                   | -               |           | 44       |                 | 53  | 53    | 80       |          | 84       | -        | 79       | 85       | 69.6         | 88.1  |
|    | 08NE114            | HIDDEN CREEK NEAR THE MOUTH                               | 70<br>90        | 58<br>100 | 36       | 29<br>24        | 52  | 55    | 79<br>87 | 97<br>88 | 60       | 59<br>75 | 66       | 79       | 63.7         | 87.7  |
|    |                    | BABINE RIVER AT BABINE                                    |                 | 74        | 93       |                 | 38  | 66    | -        |          | 89       | -        | 80       | 87       | 76.8         | 87.4  |
| -  | 08ME029            | BRIDGE RIVER BELOW LAJOIE DAN                             | 65              |           | 72       | 68              | 39  | 75    | 90       | 84       | 31       | 55       | 87       | 98       | 70.1         | 87.3  |
|    | 08MG001            | CHEHALIS RIVER NEAR HARRISON                              | 53              | 50        | 56       | 50              | 36  | 36    | 85       | 90       | 75       | 43       | 50       | 76       | 60.1         | 87.3  |
|    | 08NK030            | ELK RIVER BELOW ELKO DAM                                  | 75              | 57        | 61       | 35              | 44  | 52    | 80       | 93       | 89       | 85       | 75       | 73       | 69.6         | 86.8  |
|    | 08MF068            | COQUIHALLA RIVER ABOVE ALEXAN                             | 62              | 67        | 56       | 44              | 49  | 57    | 82       | 91       | 54       | 44       | 55       | 77       | 62.3         | 86.6  |
| -  | 08MF062            | COQUIHALLA RIVER BELOW NEEDL                              | 65              | 65        | 73       | 23              | 47  | 46    | 81       | 92       | 41       | 25       | 58       | 71       | 58.1         | 86.6  |
|    | 08JB007            |                                                           | 100             | 90        | 84       | 40              | 53  | 79    | 84       | 89       | 78       | 68       | 78       | 84       | 77.3         | 86.4  |
|    | 08HA001            | CHEMAINUS RIVER NEAR WESTHO                               | 44              | 63        | 67       | 71              | 76  | 78    | 84       | 89       | 39       | 39       | 61       | 45       | 63.6         | 86.4  |
|    | 08HA016            | BINGS CREEK NEAR THE MOUTH                                | 52              | 63        | 74       | 86              | 96  | 77    | 91       | 81       | 52       | 39       | 52       | 39       | 67.2         | 86.3  |
|    | 08LG008            | SPIUS CREEK NEAR CANFORD                                  | 80              | 69        | 82       | 51              | 44  | 65    | 79       | 93       | 75       | 65       | 63       | 78       | 70.6         | 85.8  |
|    | 08HA002            | COWICHAN RIVER AT LAKE COWICH                             | 35              | 55        | 72       | 56              | 51  | 47    | 77       | 95       | 50       | 27       | 61       | 43       | 56.3         | 85.8  |
|    | 08HB022            | NILE CREEK NEAR BOWSER                                    | 62              | 55        | 63       | 64              | 76  | 70    | 91       | 80       | 45       | 59       | 58       | 39       | 64.0         | 85.4  |
|    | 08HD025            | WOKAS LAKE NEAR CAMPBELL RIVE                             | 44              | 59        | 70       | 40              | 43  | 66    | 75       | 96       | 84       | 48       | 47       | 72       | 63.5         | 85.4  |
| -  | 08LG016            | PENNASK CREEK NEAR QUILCHENA                              | 85              | 76        | 54       | 19              | 37  | 63    | 80       | 91       | 53       | 38       | 55       | 75       | 61.4         | 85.4  |
|    | 08MH155            | NICOMEKL RIVER AT 203 STREET L                            | 50              | 70        | 63       | 69              | 75  | 75    | 89       | 81       | 56       | 41       | 44       | 44       | 63.8         | 85.2  |
|    | 08GE003            | ICY CREEK NEAR THE MOUTH                                  | 83              | 80        | 74       | 49              | 71  | 69    | 97       | 73       | 79       | 76       | 69       | 77       | 75.5         | 85.0  |
|    |                    | OR CREEK NEAR COQUITLAM                                   | 50              | 68        | 65       |                 | 62  |       | 85       | 85       | 52       | 65       | 62       |          | 67.4         | 85.0  |
|    | 08HD018            | ELK RIVER ABOVE CAMPBELL LAKE                             | 58              | 68        | 60       | 60              | 65  |       |          | 85       | 52       | 51       | 58       | 72       | 66.1         | 85.0  |
|    | 08NL007            | SIMILKAMEEN RIVER AT PRINCETO                             | 56              | 70        | 58       | 18              | 58  | 48    | 85       | 85       | 61       | 58       | 42       | 47       | 58.5         | 85.0  |
|    | 10AA006            | LIARD RIVER BELOW SCURVY CREE                             | 0               | 0         | 88       | 25              | 14  | 36    |          | 70       | 22       | 43       | 20       | 93       | 48.7         | 85.0  |
|    | 08NM037            | SHATFORD CREEK NEAR PENTICTO                              |                 | 80        | 49       | 25              | 46  |       | 80       | 89       | 56       | 62       | 81       | 83       | 66.7         | 84.8  |
|    | 08NJ160            | LEMON CREEK ABOVE SOUTH LEMO                              |                 | 63        | 53       | 16              | 35  | 49    | 80       | 89       | 60       | 58       | 61       | 73       | 59.8         | 84.8  |
|    | 08HB023            | ASH RIVER BELOW MORAN CREEK                               | 52              | 67        | 75       | 64              | 64  | 77    | 88       | 81       | 56       | 39       | 59       | 49       | 64.9         | 84.6  |
|    | 08NL038            | SIMILKAMEEN RIVER NEAR HEDLEY                             | 50              | 55        | 44       | 18              | 47  | 51    | 78       | 91       | 49       | 41       | 39       | 59       | 53.3         | 84.4  |
|    | 08NJ026            | DUHAMEL CREEK ABOVE DIVERSIO                              |                 | 65        | 30       | 27              | 53  | 46    | 82       | 85       | 63       | 59       | 55       | 84       | 62.4         | 83.9  |
|    | 08LE108            | EAST CANOE CREEK ABOVE DAM                                | 68              | 75        | 39       | 13              | 67  | 79    | 77       | 90       | 69       | 65       | 57       | 88       | 68.6         | 83.8  |
|    | 08HF004            | TSITIKA RIVER BELOW CATHERINE                             | 63              | 67        | 60       | 58              | 73  | 71    | 79       | 89       | 57       | 53       | 64       | 64       | 67.1         | 83.7  |
| _  | 08NH139            | MOYIE RIVER ABOVE NOKE CREEK                              | 89              | 63        | 52       | 8               | 50  | 54    | 96       | 71       | 56       | 36       | 72       | 67       | 62.1         | 83.6  |
|    | 08GC007            | THEODOSIA RIVER BELOW OLSEN I                             | 69              | 63        | 54       | 39              | 54  | 63    | 86       | 81       | 45       | 62       | 61       | 68       | 63.2         | 83.5  |
| 50 | 08NK016            | ELK RIVER NEAR NATAL                                      | 65              | 69        | 56       | 12              | 38  | 59    | 79       | 87       | 96       | 93       | 54       | 65       | 66.6         | 82.9  |


Table 7 shows the statistics of numbers of stations, for which the ELF Model has accurate forecasts of discharge and water level equal to and greater than 50%, 60%, 70%, 80% and 90%, from January to December and the entire year. Figure 13 (a) and (b) are bar charts of Table 7 for the forecasts of discharge and water level. From Table 7 and Figure 13, it can be seen that generally July and August are the two months that there are the largest numbers of stations that the ELF Model has large percents (>=50 to 90%) of accurate forecasts. And on the contrary, April and May are the two months that there are the least numbers of stations that large percents (>=50 to 90%) of accurate forecasts. And on the contrary, April and May are the two months that there are the least numbers of stations that the ELF Model has large percents (>=50 to 90%) of accurate forecasts. This means that the droppings of streamflow at more stations in most time of July and August follow the trends governed by Equations (15) and (16) given in Section 5 and (30) and (31) given in Section 7, and the streamflows in these two months fulfill the fundamental assumption for mathematical methods for low flow simulation described in Section 4.

It also can be seen from Tabel 3 and Figure 13 that the number of stations that the ELF Model forecasts of water level with accurate forecasts is larger than the number of stations that the ELF Model forecasts of discharge with accurate forecasts. Or in simple words, the ELF Model forecasts of water level have higher accuracy than forecasts of discharge. The reason for this may be that the data quality of discharges is lower than that of water levels in the low flow period as stated on page 39.

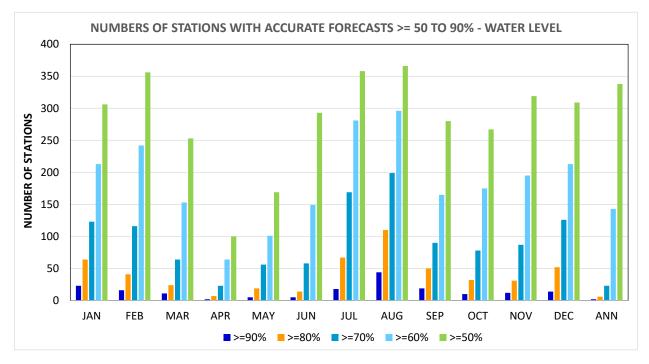
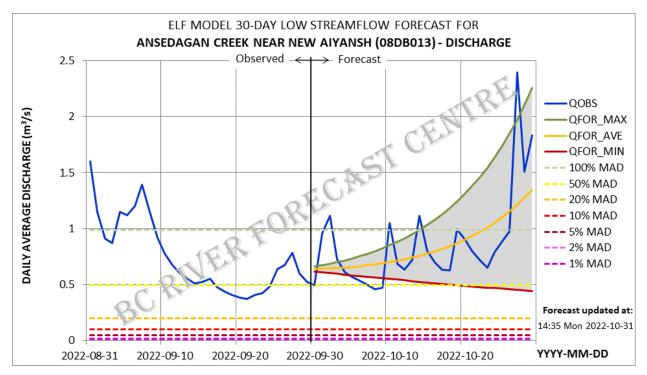

|       | NUMBERS OF STATIONS WITH ACCURATE FORECASTS >= 50 TO 90% |         |           |         |                          |       |       |       |       |       |  |  |  |  |
|-------|----------------------------------------------------------|---------|-----------|---------|--------------------------|-------|-------|-------|-------|-------|--|--|--|--|
|       |                                                          | FORECAS | TS OF DIS | SCHARGE | FORECASTS OF WATER LEVEL |       |       |       |       |       |  |  |  |  |
| Month | >=90%                                                    | >=80%   | >=70%     | >=60%   | >=50%                    | >=90% | >=80% | >=70% | >=60% | >=50% |  |  |  |  |
| JAN   | 18                                                       | 55      | 124       | 198     | 282                      | 23    | 64    | 123   | 213   | 306   |  |  |  |  |
| FEB   | 11                                                       | 50      | 116       | 214     | 318                      | 16    | 41    | 116   | 242   | 356   |  |  |  |  |
| MAR   | 7                                                        | 20      | 50        | 109     | 219                      | 11    | 24    | 64    | 153   | 253   |  |  |  |  |
| APR   | 4                                                        | 5       | 11        | 30      | 67                       | 2     | 7     | 23    | 64    | 100   |  |  |  |  |
| MAY   | 3                                                        | 6       | 23        | 53      | 108                      | 5     | 19    | 56    | 101   | 169   |  |  |  |  |
| JUN   | 0                                                        | 5       | 24        | 110     | 237                      | 5     | 14    | 58    | 149   | 293   |  |  |  |  |
| JUL   | 9                                                        | 40      | 132       | 256     | 338                      | 18    | 67    | 169   | 281   | 358   |  |  |  |  |
| AUG   | 37                                                       | 95      | 165       | 261     | 332                      | 44    | 110   | 199   | 296   | 366   |  |  |  |  |
| SEP   | 18                                                       | 36      | 67        | 145     | 246                      | 19    | 50    | 90    | 165   | 280   |  |  |  |  |
| OCT   | 3                                                        | 16      | 69        | 142     | 215                      | 10    | 32    | 78    | 175   | 267   |  |  |  |  |
| NOV   | 10                                                       | 26      | 76        | 166     | 278                      | 12    | 31    | 87    | 195   | 319   |  |  |  |  |
| DEC   | 12                                                       | 49      | 108       | 206     | 277                      | 14    | 52    | 126   | 213   | 309   |  |  |  |  |
| ANN   | 0                                                        | 0       | 6         | 78      | 301                      | 2     | 6     | 23    | 143   | 338   |  |  |  |  |

Table 7. Statistics of numbers of stations with accurate forecasts equal to and greater than 50 to 90%

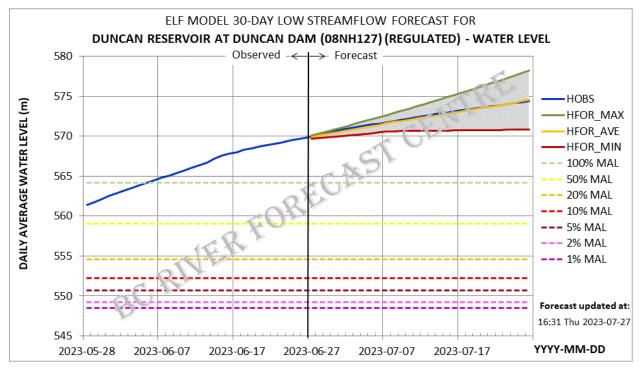
Note: There was a total of 439 stations in ELF Model in 2022.



(a) Forecasts of discharge



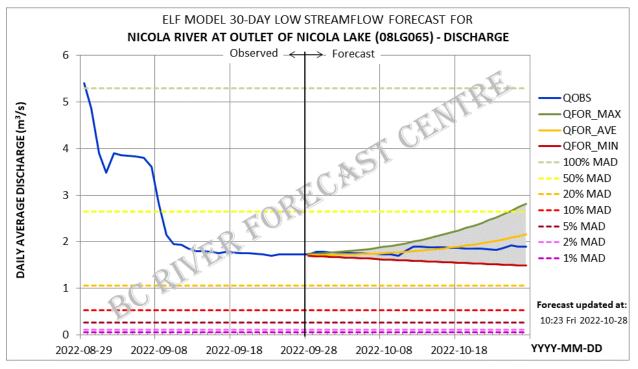

#### (b) Forecasts of water level


Figure 13. Statistical bar charts of numbers of stations with accurate forecasts equal to and greater than 50 to 90%

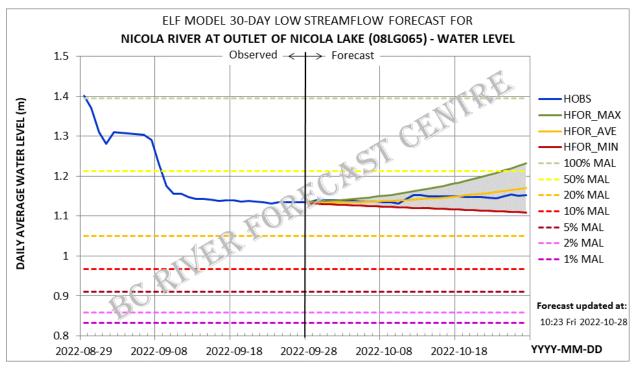
## 10. Forecasts of rise

The ELF Model is run all year round using 30 day observed flow data (discharges and/or water levels) to produce forecasts for the next 30 days regardless the flow is rising or dropping. Sometimes the forecasts of rise are very accurate (Figure 14). These forecasts of rise are for information only and are not recommended for management purposes because the ELF Model is not developed for forecasting rises and because the model has no meteorological data input.




(a) Forecast of rise for discharge – ANSEDAGAN CREEK NEAR NEW AIYANSH (08DB013) Figure 14. Examples of ELF Model accurate forecasts of rise (continued on next page.)




(b) Forecast of rise for water level – DUNCAN RESERVOIR AT DUNCAN DAM (08NH127) Figure 14. Examples of ELF Model accurate forecasts of rise (continued.)

# 11. Forecasts for regulated stations

The regulated flow stations are not removed from the list of modeled stations. As such, the ELF Modal also produce forecasts for the regulated stations and sometimes the forecasts are also accurate as long as the operation of the regulating facilities is consistent during the period of the model's input data and the period of forecasting (Figure 15). These forecasts are also for information only and are not recommended for management purpose either because the forecast accuracy is uncertain.



(a) Forecast for regulated station – NICOLA RIVER AT OUTLET OF NICOLA LAKE (08LG065)



(b) Forecast for regulated station – NICOLA RIVER AT OUTLET OF NICOLA LAKE (08LG065) Figure 15. Examples of ELF Model accurate forecasts for regulated stations

### 12. Summary and conclusions

British Columbia (BC) experienced drought hazards in the history, and the memory of drought in BC continues to be refreshed in the recent years. The River Forecast Centre (RFC) is part of BC provincial drought responding resources and low flow forecasting for drought managements is within its responsibilities. On this background, the ELF Model was developed in the RFC for medium-term (30 days) low flow forecasting in BC.

In this study, the low flow is redefined from the hydrological perspective as "the outflow from a watershed that has been continuously decreasing from the most recent high peak for a period." The decreasing period is called the "receding period," which can be determined from the historical flow data. With this definition and the receding period, the low flow is more predictable under climate change. Based on this definition, the characteristics of low flow can be summarized as that, (1) the streamflow is decreasing, (2) the sum of the rate of release from the watershed liquid water storage plus the rate of net meteorological liquid water input is decreasing, (3) the net meteorological liquid water storage in the watershed, (4) the watershed liquid water storage is decreasing.

Hydrological methods for low flow simulation are faced with the following three obstacles: (1) The magnitude of low flow is very small and sometimes is about the magnitudes of measurement errors or forecast errors of any hydrological model. (2) "Low flow" is always referred to as "baseflow" in hydrological models. For most conceptual/ lumped-sum hydrological models, the baseflow is a preset constant. Consequently, the changing low flow cannot be simulated with a conceptual/ lumped-sum hydrological model. (3) For physically based distributed hydrological models, the baseflow is mainly from the release of groundwater. Severe insufficiency of groundwater and aquifer data prevent this kind of hydrological models to generate accurate low flow forecasts.

In order to avoid the obstacles faced by hydrological methods in low flow simulation, mathematical or empirical methods are an inevitable alternative. In this study, the fundamental assumption for mathematical methods for low flow forecasting is that the sum of the water release rate from the watershed liquid water storage plus the net meteorological liquid water input rate to the streamflow is a function of time and parameters, and the parameters remain constant for a certain period.

The basic equation for the mathematical method is the exponential recession equation. The first order and second order derivatives for discharge and water level with respect to time are derived. Based on these derivative equations, the first characteristic of low flow is extended to that the streamflow is decreasing, and the decreasing rate of the streamflow becomes smaller and smaller with time.

In this study, the ELF Model uses 30-day of logarithmic streamflow data to produce 30-day of forecasts. There are only two parameters in the linear logarithmic equation, and therefore the system becomes overdetermined if all the 30 data points are fitted in the linear equation at once. The least squares method is employed to find the two parameters of the linear logarithmic equation for the

51

overdetermined system.

In the real world, the actual low flow data may include significant noises, and the logarithmic flow may not always be linear. In this study, the so-called "twelve-step and twelve-scenario scheme" is developed to meet the challenges posed by the data noise and non-logarithmic flow issues. This scheme also produces analogues to ensemble forecasts for low flows, which include forecast maximums, minimums, and averages for the next 30 days. In a run, the ELF Model generates a series of products, (1) a Maphub GIS map with color coded markers, (2) interactive charts of forecast hydrographs for discharges and water levels, (3) static charts of forecast hydrographs for discharges and water levels, (4) forecast verifications for the previous month and a similar period of the previous year, and (5) text (csv) files of the daily forecasts.

In this study, a different approach is employed to evaluate the model forecast accuracy – how the forecast maximums and the minimums accommodate the observed flows, (1) the forecast is first said accurate if all the observed flows (daily discharges or water levels) fall in between the forecast maximums and minimums in the 30-day forecasting period, (2) 2/3 of the observed data points fall in between the forecast maximums (+10%) and minimums (-10%), (3) 1/3 of the observed data points, which are the lowest in the forecasting period, fall in between the forecast maximums (+10%) and minimums (-10%), or (4) 3/5 of the last 5 observed data points in the forecasting period fall in between the forecasting period fall period fall period fall period fall per

The ELF Model was put into operation as of July 2018, and together with the reconstructed "forecasts" from January 2015 to June 2018, there is a total of 8 years of forecasts by the end of 2022 (about 800) for each of the 439 stations. A statistical analysis for the ELF Model historical forecasts for all the flow stations was carried out. Bar charts of percents of accurate forecasts of discharges and water levels for each month and the entire year are plotted for all the modeled stations based on the statistical analysis results. The results show that, in general, the ELF Model has better forecasts for most stations in July and August than in the other months, the forecast accuracy is the lowest in April and May, and the forecast accuracy for water levels is higher than that for discharges.

The ELF Model is run all year round and sometimes also forecasts rises. The ELF Model does not exclude the regulated stations from the forecasts. However, these forecasts are for information only though they may be accurate sometimes.

From the findings of his study, it can be concluded that (1) the definition of low flow in this study makes low flows more predictable under climate change, (2) the "twelve-step and twelve-scenario scheme" developed in this study is an effective scheme to meet the challenges posed by the data issues, and produces analogues to ensemble forecasts for low flows, and (3) the statistical analysis results indicate that the ELF Model can produce accurate low flow forecast when the streamflow conditions fulfill the fundamental assumption for mathematical methods for low flow simulation and fulfill the exponential recession equation during the model input data and forecasting periods.

52

### 13. References

20eef50b08f7ebc (Accessed on April 19, 2023.)

- BC Gov., 2023 a. "Historical British Columbia Drought Information" in British Columbia Drought Information Portal, <u>https://governmentofbc.maps.arcgis.com/apps/MapSeries/index.html?appid=838d533d8062411c8</u>
- BC Gov., 2023 b. "BC Groundwater Wells and Aquifers" <u>https://apps.nrs.gov.bc.ca/gwells/aquifers?map\_centre=53.810684,-124.817461</u> (Accessed on August 3, 2023.)
- Barnes, B.S., 1939. "The structure of discharge recession curves." Trans. AGU 20, 721-725.
- Bonsal, B. R., E. Wheaton, A. C. Chipanshi , C. A. Lin, D. J. Sauchyn, and L. Wen, 2011. "Drought research in Canada: A review." Atmos. Ocean, 49, 303–319, doi:10.1080/07055900.2011.555103.
   <a href="https://www.tandfonline.com/doi/full/10.1080/07055900.2011.555103">https://www.tandfonline.com/doi/full/10.1080/07055900.2011.555103</a> (Accessed on April 18, 2023.)
- Demirel, M. C., Booij, M. J., and Hoekstra, A. Y., 2015. "The skill of seasonal ensemble low flow forecasts in the Moselle River for three different hydrological models." Hydrol. Earth Syst. Sci., 19, 275–291, https://doi.org/10.5194/hess-19-275-2015.
- Econnics and MOE (British Columbia Ministry of Environment), 2015. British Columbia Drought Response Plan. <u>https://www.summerland.ca/docs/default-source/works-and-utilities/bc-drought-response-</u> plan.pdf?sfvrsn=0 (Accessed on April 18, 2023.)
- Gustard, A., 1983. "Regional variability of soil characteristics for flood and low flow estimation." Agricultural Water Management, 6(2-3), 255-268.
- Gustard, A., A. Bullock and J.M. Dixon, 1992. "Low Flow Estimation in the United Kingdom." Report No. 108, Institute of Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, United Kingdom, pp88. <a href="https://nora.nerc.ac.uk/id/eprint/6050/1/IH\_108.pdf">https://nora.nerc.ac.uk/id/eprint/6050/1/IH\_108.pdf</a> (Accessed on July 5, 2023.)
- Hall, F.R., 1968. "Base-flow recession A review." Water Resources Research. 4 (5), 973-983.
- Luo, Q., 2000 a. "Non-optimization direct method of inverse problem (NODMIP) for groundwater modeling in a large-scale basin," J. Japan Soc. Hydrol. & Watger Resour., 13(2), 148-155.
- Luo, Q., 2000 b. "Chapter 7 Groundwater Models" in "A Distributed Water Balance Model in Large -scale Complex Watersheds (LCW) and Its Application to the Kanto Region." Ph.D. dissertation of the University of Tokyo, Tokyo, Japan, September 2000, pp.152.
- Luo, Q., 2007. "A distributed surface flow model for watersheds with large water bodies and channel loops," Journal of Hydrology 337, 172–186.
- Luo, C., 2015. Technical reference for the CLEVER model—A real-time flood forecasting model for British Columbia. BC River Forecast Centre, Victoria, BC, Canada.

- Luo, C., 2021. "Comparing five kinematic wave schemes for open-channel routing for wide-tooth-combwave hydrographs," J. Hydrol. Eng., 26(4). DOI: <u>10.1061/(ASCE)HE.1943-5584.0002079</u>.
- MEKIS, E. and L.A. VINCENT. 2008. "Changes in daily and extreme temperature and precipitation indices related to droughts in Canada." In Proc. 17th Applied Climatology Conference. Whistler, BC.
- Nicolle, P., Pushpalatha, R., Perrin, C., François, D., Thiéry, D., Mathevet, T., Le Lay, M., Besson, F.,
  Soubeyroux, J.-M., Viel, C., Regimbeau, F., Andréassian, V., Maugis, P., Augeard, B., and Morice, E.,
  2014. "Benchmarking hydrological models for low flow simulation and forecasting on French catchments," Hydrol. Earth Syst. Sci., 18, 2829–2857, <a href="https://doi.org/10.5194/hess-18-2829-2014">https://doi.org/10.5194/hess-18-2829-2014</a>.
- Quick, M.C. and Pipes, A., 1977. "U.BC Watershed Model." Hydrological Sciences Bulletin, 22:1, 153-161.
- Reed, D. W., and D. W. Warne, 1985. "Low flow forecasting to aid regulation of the river Wye." Technical Report of Institute of Hydrology, Natural Environment Research Council, UK,

http://nora.nerc.ac.uk/id/eprint/14798/1/N014798CR.pdf (Accessed on April 18, 2023.)

- Risva, K., Nikolopoulos, D., Efstratiadis, A., and Nalbantis, I., 2018. "A Framework for Dry Period Low Flow Forecasting in Mediterranean Streams," Water Resour. Manag., 32, 4911–4932, <u>https://doi.org/10.1007/s11269-018-2060-z</u>.
- Smakhtin, V.U., 2001. "Low flow hydrology: a review." Journal of Hydrology. 147-186.
- Szeto, k., X. Zhang, R.E. White, and J. Brimelow, 2016. "9. THE 2015 EXTREME DROUGHT IN WESTERN CANADA," DOI:10.1175/BAMS-D-16-0147.1, BANS | DECEMBER 2016, S42-S46, <u>http://www.ametsoc.net/eee/2015/9\_canada\_drought.pdf</u> (Accessed on April 18, 2023.)
- Toebes, C., and Strang, D.D., 1964. "On recession curves. 1 Recession equations." Hydrol. (NZ) 3 (2), 2-15.
- USEPA (United States Environmental Protection Agency), 2022. "Definitions and Characteristics of Low Flows." <u>https://www.epa.gov/ceam/definition-and-characteristics-low-flows</u>, (Last Updated on August 31, 2022.) (Accessed on August 10, 2023.)
- VINCENT, L.A. and E. MEKIS, 2006. "Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century." ATMOSPHERE-OCEAN, 44: 177–193.
- WLRS (British Columbia Ministry of Water, Land and Resource Stewardship) and IADWG (Inter-Agency Drought Working Group), 2023. British Columbia Drought and Water Scarcity Response Plan, <u>https://www2.gov.bc.ca/assets/gov/environment/air-land-water/water/droughtinfo/drought\_response\_plan\_final.pdf</u> (Accessed on August 18, 2023.)
- WMO (World Meteorological Organization), 2008. "Manual on Low flow Estimation and Prediction," Operational Hydrology Report No. 50, WMO-No. 1029, pp138.
   <a href="https://library.wmo.int/doc\_num.php?explnum\_id=7699">https://library.wmo.int/doc\_num.php?explnum\_id=7699</a>. (Accessed on June 13, 2023.)